| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 2252. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3753 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 [wsbc 3750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3751 |
| This theorem is referenced by: sbceq2a 3762 elrabsf 3796 cbvralcsf 3901 reusngf 4634 rexreusng 4639 reuprg0 4662 rmosn 4679 rabsnifsb 4682 euotd 5468 reuop 6254 frpoinsg 6304 elfvmptrab1w 6977 elfvmptrab1 6978 ralrnmpt 7050 riotass2 7356 riotass 7357 oprabv 7429 elovmporab 7615 elovmporab1w 7616 elovmporab1 7617 ovmpt3rabdm 7628 elovmpt3rab1 7629 tfisg 7810 tfindes 7819 sbcopeq1a 8007 sbcoteq1a 8009 mpoxopoveq 8175 findcard2 9105 ac6sfi 9207 indexfi 9287 frinsg 9680 nn0ind-raph 12610 fzrevral 13549 wrdind 14663 wrd2ind 14664 prmind2 16631 elmptrab 23690 isfildlem 23720 2sqreulem4 27341 gropd 28934 grstructd 28935 rspc2daf 32368 opreu2reuALT 32379 ifeqeqx 32444 wrdt2ind 32848 bnj919 34730 bnj976 34740 bnj1468 34809 bnj110 34821 bnj150 34839 bnj151 34840 bnj607 34879 bnj873 34887 bnj849 34888 bnj1388 34996 setinds 35739 dfon2lem1 35744 rdgssun 37339 indexdom 37701 sdclem2 37709 sdclem1 37710 fdc1 37713 riotasv2s 38924 elimhyps 38927 sbccomieg 42754 rexrabdioph 42755 rexfrabdioph 42756 aomclem6 43021 pm13.13a 44369 pm13.13b 44370 pm13.14 44371 tratrb 44499 uzwo4 45020 or2expropbilem2 47007 reuf1odnf 47081 ich2exprop 47445 ichnreuop 47446 ichreuopeq 47447 prproropreud 47483 reupr 47496 reuopreuprim 47500 |
| Copyright terms: Public domain | W3C validator |