Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 2244. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2248 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 3719 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2067 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: sbceq2a 3728 elrabsf 3764 cbvralcsf 3877 reusngf 4608 rexreusng 4615 reuprg0 4638 rmosn 4655 rabsnifsb 4658 euotd 5427 reuop 6196 frpoinsg 6246 wfisgOLD 6257 elfvmptrab1w 6901 elfvmptrab1 6902 ralrnmpt 6972 riotass2 7263 riotass 7264 oprabv 7335 elovmporab 7515 elovmporab1w 7516 elovmporab1 7517 ovmpt3rabdm 7528 elovmpt3rab1 7529 tfindes 7709 sbcopeq1a 7890 mpoxopoveq 8035 findcard2 8947 findcard2OLD 9056 ac6sfi 9058 indexfi 9127 frinsg 9509 nn0ind-raph 12420 fzrevral 13341 wrdind 14435 wrd2ind 14436 prmind2 16390 elmptrab 22978 isfildlem 23008 2sqreulem4 26602 gropd 27401 grstructd 27402 rspc2daf 30816 opreu2reuALT 30825 ifeqeqx 30885 wrdt2ind 31225 bnj919 32747 bnj976 32757 bnj1468 32826 bnj110 32838 bnj150 32856 bnj151 32857 bnj607 32896 bnj873 32904 bnj849 32905 bnj1388 33013 sbcoteq1a 33687 setinds 33754 dfon2lem1 33759 tfisg 33786 rdgssun 35549 indexdom 35892 sdclem2 35900 sdclem1 35901 fdc1 35904 riotasv2s 36972 elimhyps 36975 sbccomieg 40615 rexrabdioph 40616 rexfrabdioph 40617 aomclem6 40884 pm13.13a 42025 pm13.13b 42026 pm13.14 42027 tratrb 42156 uzwo4 42601 or2expropbilem2 44527 reuf1odnf 44599 ich2exprop 44923 ichnreuop 44924 ichreuopeq 44925 prproropreud 44961 reupr 44974 reuopreuprim 44978 |
Copyright terms: Public domain | W3C validator |