Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 2251. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2255 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 3700 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 288 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1539 [wsb 2070 [wsbc 3697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-sbc 3698 |
This theorem is referenced by: sbceq2a 3709 elrabsf 3742 cbvralcsf 3848 vtocl2dOLD 3854 reusngf 4570 rexreusng 4575 reuprg0 4596 rmosn 4613 rabsnifsb 4616 euotd 5373 reuop 6123 wfisg 6162 elfvmptrab1w 6786 elfvmptrab1 6787 ralrnmpt 6854 riotass2 7139 riotass 7140 oprabv 7209 elovmporab 7388 elovmporab1w 7389 elovmporab1 7390 ovmpt3rabdm 7401 elovmpt3rab1 7402 tfindes 7577 sbcopeq1a 7753 mpoxopoveq 7896 findcard2 8736 findcard2OLD 8794 ac6sfi 8796 indexfi 8866 nn0ind-raph 12122 fzrevral 13042 wrdind 14132 wrd2ind 14133 prmind2 16082 elmptrab 22528 isfildlem 22558 2sqreulem4 26138 gropd 26924 grstructd 26925 rspc2daf 30338 opreu2reuALT 30347 ifeqeqx 30408 wrdt2ind 30750 bnj919 32267 bnj976 32278 bnj1468 32347 bnj110 32359 bnj150 32377 bnj151 32378 bnj607 32417 bnj873 32425 bnj849 32426 bnj1388 32534 sbcoteq1a 33207 setinds 33271 dfon2lem1 33276 tfisg 33303 frpoinsg 33329 frinsg 33338 rdgssun 35076 indexdom 35453 sdclem2 35461 sdclem1 35462 fdc1 35465 riotasv2s 36535 elimhyps 36538 sbccomieg 40108 rexrabdioph 40109 rexfrabdioph 40110 aomclem6 40377 pm13.13a 41485 pm13.13b 41486 pm13.14 41487 tratrb 41616 uzwo4 42061 or2expropbilem2 43992 reuf1odnf 44032 ich2exprop 44357 ichnreuop 44358 ichreuopeq 44359 prproropreud 44395 reupr 44408 reuopreuprim 44412 |
Copyright terms: Public domain | W3C validator |