Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 2247. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2251 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 3714 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 284 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2068 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbceq2a 3723 elrabsf 3759 cbvralcsf 3873 reusngf 4605 rexreusng 4612 reuprg0 4635 rmosn 4652 rabsnifsb 4655 euotd 5421 reuop 6185 frpoinsg 6231 wfisgOLD 6242 elfvmptrab1w 6883 elfvmptrab1 6884 ralrnmpt 6954 riotass2 7243 riotass 7244 oprabv 7313 elovmporab 7493 elovmporab1w 7494 elovmporab1 7495 ovmpt3rabdm 7506 elovmpt3rab1 7507 tfindes 7684 sbcopeq1a 7863 mpoxopoveq 8006 findcard2 8909 findcard2OLD 8986 ac6sfi 8988 indexfi 9057 frinsg 9440 nn0ind-raph 12350 fzrevral 13270 wrdind 14363 wrd2ind 14364 prmind2 16318 elmptrab 22886 isfildlem 22916 2sqreulem4 26507 gropd 27304 grstructd 27305 rspc2daf 30717 opreu2reuALT 30726 ifeqeqx 30786 wrdt2ind 31127 bnj919 32647 bnj976 32657 bnj1468 32726 bnj110 32738 bnj150 32756 bnj151 32757 bnj607 32796 bnj873 32804 bnj849 32805 bnj1388 32913 sbcoteq1a 33590 setinds 33660 dfon2lem1 33665 tfisg 33692 rdgssun 35476 indexdom 35819 sdclem2 35827 sdclem1 35828 fdc1 35831 riotasv2s 36899 elimhyps 36902 sbccomieg 40531 rexrabdioph 40532 rexfrabdioph 40533 aomclem6 40800 pm13.13a 41914 pm13.13b 41915 pm13.14 41916 tratrb 42045 uzwo4 42490 or2expropbilem2 44414 reuf1odnf 44486 ich2exprop 44811 ichnreuop 44812 ichreuopeq 44813 prproropreud 44849 reupr 44862 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |