| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 2251. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 2255 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3768 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2064 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sbc 3766 |
| This theorem is referenced by: sbceq2a 3777 elrabsf 3811 cbvralcsf 3916 reusngf 4650 rexreusng 4655 reuprg0 4678 rmosn 4695 rabsnifsb 4698 euotd 5488 reuop 6282 frpoinsg 6332 wfisgOLD 6343 elfvmptrab1w 7013 elfvmptrab1 7014 ralrnmpt 7086 riotass2 7392 riotass 7393 oprabv 7467 elovmporab 7653 elovmporab1w 7654 elovmporab1 7655 ovmpt3rabdm 7666 elovmpt3rab1 7667 tfisg 7849 tfindes 7858 sbcopeq1a 8048 sbcoteq1a 8050 mpoxopoveq 8218 findcard2 9178 ac6sfi 9292 indexfi 9372 frinsg 9765 nn0ind-raph 12693 fzrevral 13629 wrdind 14740 wrd2ind 14741 prmind2 16704 elmptrab 23765 isfildlem 23795 2sqreulem4 27417 gropd 29010 grstructd 29011 rspc2daf 32447 opreu2reuALT 32458 ifeqeqx 32523 wrdt2ind 32929 bnj919 34798 bnj976 34808 bnj1468 34877 bnj110 34889 bnj150 34907 bnj151 34908 bnj607 34947 bnj873 34955 bnj849 34956 bnj1388 35064 setinds 35796 dfon2lem1 35801 rdgssun 37396 indexdom 37758 sdclem2 37766 sdclem1 37767 fdc1 37770 riotasv2s 38976 elimhyps 38979 sbccomieg 42816 rexrabdioph 42817 rexfrabdioph 42818 aomclem6 43083 pm13.13a 44431 pm13.13b 44432 pm13.14 44433 tratrb 44561 uzwo4 45077 or2expropbilem2 47062 reuf1odnf 47136 ich2exprop 47485 ichnreuop 47486 ichreuopeq 47487 prproropreud 47523 reupr 47536 reuopreuprim 47540 |
| Copyright terms: Public domain | W3C validator |