| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 2254. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 2258 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3739 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: sbceq2a 3748 elrabsf 3782 cbvralcsf 3887 reusngf 4622 rexreusng 4627 reuprg0 4650 rmosn 4667 rabsnifsb 4670 euotd 5448 reuop 6235 frpoinsg 6285 elfvmptrab1w 6951 elfvmptrab1 6952 ralrnmpt 7024 riotass2 7328 riotass 7329 oprabv 7401 elovmporab 7587 elovmporab1w 7588 elovmporab1 7589 ovmpt3rabdm 7600 elovmpt3rab1 7601 tfisg 7779 tfindes 7788 sbcopeq1a 7976 sbcoteq1a 7978 mpoxopoveq 8144 findcard2 9069 ac6sfi 9163 indexfi 9239 setinds 9634 frinsg 9639 nn0ind-raph 12568 fzrevral 13507 wrdind 14624 wrd2ind 14625 prmind2 16591 elmptrab 23737 isfildlem 23767 2sqreulem4 27387 gropd 29004 grstructd 29005 rspc2daf 32437 opreu2reuALT 32448 ifeqeqx 32514 wrdt2ind 32926 bnj919 34771 bnj976 34781 bnj1468 34850 bnj110 34862 bnj150 34880 bnj151 34881 bnj607 34920 bnj873 34928 bnj849 34929 bnj1388 35037 dfon2lem1 35817 rdgssun 37412 indexdom 37774 sdclem2 37782 sdclem1 37783 fdc1 37786 riotasv2s 38997 elimhyps 39000 sbccomieg 42826 rexrabdioph 42827 rexfrabdioph 42828 aomclem6 43092 pm13.13a 44440 pm13.13b 44441 pm13.14 44442 tratrb 44569 uzwo4 45090 or2expropbilem2 47064 reuf1odnf 47138 ich2exprop 47502 ichnreuop 47503 ichreuopeq 47504 prproropreud 47540 reupr 47553 reuopreuprim 47557 |
| Copyright terms: Public domain | W3C validator |