![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 2239. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2243 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 3779 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 [wsb 2060 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-sbc 3777 |
This theorem is referenced by: sbceq2a 3788 elrabsf 3825 cbvralcsf 3937 reusngf 4677 rexreusng 4684 reuprg0 4707 rmosn 4724 rabsnifsb 4727 euotd 5515 reuop 6297 frpoinsg 6349 wfisgOLD 6360 elfvmptrab1w 7032 elfvmptrab1 7033 ralrnmpt 7106 riotass2 7407 riotass 7408 oprabv 7480 elovmporab 7667 elovmporab1w 7668 elovmporab1 7669 ovmpt3rabdm 7680 elovmpt3rab1 7681 tfisg 7858 tfindes 7867 sbcopeq1a 8053 sbcoteq1a 8055 mpoxopoveq 8225 findcard2 9189 findcard2OLD 9309 ac6sfi 9312 indexfi 9385 frinsg 9775 nn0ind-raph 12693 fzrevral 13619 wrdind 14705 wrd2ind 14706 prmind2 16656 elmptrab 23744 isfildlem 23774 2sqreulem4 27400 gropd 28857 grstructd 28858 rspc2daf 32279 opreu2reuALT 32288 ifeqeqx 32346 wrdt2ind 32687 bnj919 34398 bnj976 34408 bnj1468 34477 bnj110 34489 bnj150 34507 bnj151 34508 bnj607 34547 bnj873 34555 bnj849 34556 bnj1388 34664 setinds 35374 dfon2lem1 35379 rdgssun 36857 indexdom 37207 sdclem2 37215 sdclem1 37216 fdc1 37219 riotasv2s 38430 elimhyps 38433 sbccomieg 42213 rexrabdioph 42214 rexfrabdioph 42215 aomclem6 42483 pm13.13a 43844 pm13.13b 43845 pm13.14 43846 tratrb 43975 uzwo4 44417 or2expropbilem2 46415 reuf1odnf 46487 ich2exprop 46811 ichnreuop 46812 ichreuopeq 46813 prproropreud 46849 reupr 46862 reuopreuprim 46866 |
Copyright terms: Public domain | W3C validator |