| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 2256. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 2260 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3740 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 [wsbc 3737 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-sbc 3738 |
| This theorem is referenced by: sbceq2a 3749 elrabsf 3783 cbvralcsf 3888 reusngf 4628 rexreusng 4633 reuprg0 4656 rmosn 4673 rabsnifsb 4676 euotd 5458 reuop 6248 frpoinsg 6298 elfvmptrab1w 6965 elfvmptrab1 6966 ralrnmpt 7038 riotass2 7342 riotass 7343 oprabv 7415 elovmporab 7601 elovmporab1w 7602 elovmporab1 7603 ovmpt3rabdm 7614 elovmpt3rab1 7615 tfisg 7793 tfindes 7802 sbcopeq1a 7990 sbcoteq1a 7992 mpoxopoveq 8158 findcard2 9085 ac6sfi 9179 indexfi 9255 setinds 9650 frinsg 9655 nn0ind-raph 12583 fzrevral 13519 wrdind 14636 wrd2ind 14637 prmind2 16603 elmptrab 23762 isfildlem 23792 2sqreulem4 27412 gropd 29030 grstructd 29031 rspc2daf 32466 opreu2reuALT 32477 ifeqeqx 32543 wrdt2ind 32963 bnj919 34851 bnj976 34861 bnj1468 34930 bnj110 34942 bnj150 34960 bnj151 34961 bnj607 35000 bnj873 35008 bnj849 35009 bnj1388 35117 dfon2lem1 35897 rdgssun 37495 indexdom 37847 sdclem2 37855 sdclem1 37856 fdc1 37859 riotasv2s 39130 elimhyps 39133 sbccomieg 42950 rexrabdioph 42951 rexfrabdioph 42952 aomclem6 43216 pm13.13a 44564 pm13.13b 44565 pm13.14 44566 tratrb 44693 uzwo4 45214 or2expropbilem2 47195 reuf1odnf 47269 ich2exprop 47633 ichnreuop 47634 ichreuopeq 47635 prproropreud 47671 reupr 47684 reuopreuprim 47688 |
| Copyright terms: Public domain | W3C validator |