![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version |
Description: Equality theorem for class substitution. Class version of sbequ12 2252. (Contributed by NM, 26-Sep-2003.) |
Ref | Expression |
---|---|
sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
2 | dfsbcq2 3807 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbceq2a 3816 elrabsf 3853 cbvralcsf 3966 reusngf 4696 rexreusng 4703 reuprg0 4727 rmosn 4744 rabsnifsb 4747 euotd 5532 reuop 6324 frpoinsg 6375 wfisgOLD 6386 elfvmptrab1w 7056 elfvmptrab1 7057 ralrnmpt 7130 riotass2 7435 riotass 7436 oprabv 7510 elovmporab 7696 elovmporab1w 7697 elovmporab1 7698 ovmpt3rabdm 7709 elovmpt3rab1 7710 tfisg 7891 tfindes 7900 sbcopeq1a 8090 sbcoteq1a 8092 mpoxopoveq 8260 findcard2 9230 ac6sfi 9348 indexfi 9430 frinsg 9820 nn0ind-raph 12743 fzrevral 13669 wrdind 14770 wrd2ind 14771 prmind2 16732 elmptrab 23856 isfildlem 23886 2sqreulem4 27516 gropd 29066 grstructd 29067 rspc2daf 32495 opreu2reuALT 32505 ifeqeqx 32565 wrdt2ind 32920 bnj919 34743 bnj976 34753 bnj1468 34822 bnj110 34834 bnj150 34852 bnj151 34853 bnj607 34892 bnj873 34900 bnj849 34901 bnj1388 35009 setinds 35742 dfon2lem1 35747 rdgssun 37344 indexdom 37694 sdclem2 37702 sdclem1 37703 fdc1 37706 riotasv2s 38914 elimhyps 38917 sbccomieg 42749 rexrabdioph 42750 rexfrabdioph 42751 aomclem6 43016 pm13.13a 44376 pm13.13b 44377 pm13.14 44378 tratrb 44507 uzwo4 44955 or2expropbilem2 46948 reuf1odnf 47022 ich2exprop 47345 ichnreuop 47346 ichreuopeq 47347 prproropreud 47383 reupr 47396 reuopreuprim 47400 |
Copyright terms: Public domain | W3C validator |