| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 2252. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3759 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: sbceq2a 3768 elrabsf 3802 cbvralcsf 3907 reusngf 4641 rexreusng 4646 reuprg0 4669 rmosn 4686 rabsnifsb 4689 euotd 5476 reuop 6269 frpoinsg 6319 elfvmptrab1w 6998 elfvmptrab1 6999 ralrnmpt 7071 riotass2 7377 riotass 7378 oprabv 7452 elovmporab 7638 elovmporab1w 7639 elovmporab1 7640 ovmpt3rabdm 7651 elovmpt3rab1 7652 tfisg 7833 tfindes 7842 sbcopeq1a 8031 sbcoteq1a 8033 mpoxopoveq 8201 findcard2 9134 ac6sfi 9238 indexfi 9318 frinsg 9711 nn0ind-raph 12641 fzrevral 13580 wrdind 14694 wrd2ind 14695 prmind2 16662 elmptrab 23721 isfildlem 23751 2sqreulem4 27372 gropd 28965 grstructd 28966 rspc2daf 32402 opreu2reuALT 32413 ifeqeqx 32478 wrdt2ind 32882 bnj919 34764 bnj976 34774 bnj1468 34843 bnj110 34855 bnj150 34873 bnj151 34874 bnj607 34913 bnj873 34921 bnj849 34922 bnj1388 35030 setinds 35773 dfon2lem1 35778 rdgssun 37373 indexdom 37735 sdclem2 37743 sdclem1 37744 fdc1 37747 riotasv2s 38958 elimhyps 38961 sbccomieg 42788 rexrabdioph 42789 rexfrabdioph 42790 aomclem6 43055 pm13.13a 44403 pm13.13b 44404 pm13.14 44405 tratrb 44533 uzwo4 45054 or2expropbilem2 47038 reuf1odnf 47112 ich2exprop 47476 ichnreuop 47477 ichreuopeq 47478 prproropreud 47514 reupr 47527 reuopreuprim 47531 |
| Copyright terms: Public domain | W3C validator |