| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 2252. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3747 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbceq2a 3756 elrabsf 3790 cbvralcsf 3895 reusngf 4628 rexreusng 4633 reuprg0 4656 rmosn 4673 rabsnifsb 4676 euotd 5460 reuop 6245 frpoinsg 6295 elfvmptrab1w 6961 elfvmptrab1 6962 ralrnmpt 7034 riotass2 7340 riotass 7341 oprabv 7413 elovmporab 7599 elovmporab1w 7600 elovmporab1 7601 ovmpt3rabdm 7612 elovmpt3rab1 7613 tfisg 7794 tfindes 7803 sbcopeq1a 7991 sbcoteq1a 7993 mpoxopoveq 8159 findcard2 9088 ac6sfi 9189 indexfi 9269 frinsg 9666 nn0ind-raph 12594 fzrevral 13533 wrdind 14646 wrd2ind 14647 prmind2 16614 elmptrab 23730 isfildlem 23760 2sqreulem4 27381 gropd 28994 grstructd 28995 rspc2daf 32428 opreu2reuALT 32439 ifeqeqx 32504 wrdt2ind 32908 bnj919 34736 bnj976 34746 bnj1468 34815 bnj110 34827 bnj150 34845 bnj151 34846 bnj607 34885 bnj873 34893 bnj849 34894 bnj1388 35002 setinds 35754 dfon2lem1 35759 rdgssun 37354 indexdom 37716 sdclem2 37724 sdclem1 37725 fdc1 37728 riotasv2s 38939 elimhyps 38942 sbccomieg 42769 rexrabdioph 42770 rexfrabdioph 42771 aomclem6 43035 pm13.13a 44383 pm13.13b 44384 pm13.14 44385 tratrb 44513 uzwo4 45034 or2expropbilem2 47021 reuf1odnf 47095 ich2exprop 47459 ichnreuop 47460 ichreuopeq 47461 prproropreud 47497 reupr 47510 reuopreuprim 47514 |
| Copyright terms: Public domain | W3C validator |