| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceq1a | Structured version Visualization version GIF version | ||
| Description: Equality theorem for class substitution. Class version of sbequ12 2252. (Contributed by NM, 26-Sep-2003.) |
| Ref | Expression |
|---|---|
| sbceq1a | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid 2256 | . 2 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) | |
| 2 | dfsbcq2 3756 | . 2 ⊢ (𝑥 = 𝐴 → ([𝑥 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3id 285 | 1 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: sbceq2a 3765 elrabsf 3799 cbvralcsf 3904 reusngf 4638 rexreusng 4643 reuprg0 4666 rmosn 4683 rabsnifsb 4686 euotd 5473 reuop 6266 frpoinsg 6316 elfvmptrab1w 6995 elfvmptrab1 6996 ralrnmpt 7068 riotass2 7374 riotass 7375 oprabv 7449 elovmporab 7635 elovmporab1w 7636 elovmporab1 7637 ovmpt3rabdm 7648 elovmpt3rab1 7649 tfisg 7830 tfindes 7839 sbcopeq1a 8028 sbcoteq1a 8030 mpoxopoveq 8198 findcard2 9128 ac6sfi 9231 indexfi 9311 frinsg 9704 nn0ind-raph 12634 fzrevral 13573 wrdind 14687 wrd2ind 14688 prmind2 16655 elmptrab 23714 isfildlem 23744 2sqreulem4 27365 gropd 28958 grstructd 28959 rspc2daf 32395 opreu2reuALT 32406 ifeqeqx 32471 wrdt2ind 32875 bnj919 34757 bnj976 34767 bnj1468 34836 bnj110 34848 bnj150 34866 bnj151 34867 bnj607 34906 bnj873 34914 bnj849 34915 bnj1388 35023 setinds 35766 dfon2lem1 35771 rdgssun 37366 indexdom 37728 sdclem2 37736 sdclem1 37737 fdc1 37740 riotasv2s 38951 elimhyps 38954 sbccomieg 42781 rexrabdioph 42782 rexfrabdioph 42783 aomclem6 43048 pm13.13a 44396 pm13.13b 44397 pm13.14 44398 tratrb 44526 uzwo4 45047 or2expropbilem2 47034 reuf1odnf 47108 ich2exprop 47472 ichnreuop 47473 ichreuopeq 47474 prproropreud 47510 reupr 47523 reuopreuprim 47527 |
| Copyright terms: Public domain | W3C validator |