![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24nel | Structured version Visualization version GIF version |
Description: A contradiction concerning membership implies anything. (Contributed by Alexander van der Vekens, 25-Jan-2018.) |
Ref | Expression |
---|---|
pm2.24nel | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∉ 𝐵 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3045 | . 2 ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) | |
2 | pm2.24 124 | . 2 ⊢ (𝐴 ∈ 𝐵 → (¬ 𝐴 ∈ 𝐵 → 𝜑)) | |
3 | 1, 2 | biimtrid 241 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∉ 𝐵 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2104 ∉ wnel 3044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-nel 3045 |
This theorem is referenced by: xnn0lenn0nn0 13228 ge2nprmge4 16642 afv2orxorb 46234 |
Copyright terms: Public domain | W3C validator |