| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnelne2 | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| elnelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3038 | . 2 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
| 2 | nelne2 3031 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) | |
| 3 | 1, 2 | sylan2b 594 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2933 ∉ wnel 3037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 df-ne 2934 df-nel 3038 |
| This theorem is referenced by: nelrnfvne 7072 eldmrexrnb 7087 absprodnn 16642 frgrncvvdeqlem2 30286 frgrncvvdeqlem3 30287 afv0nbfvbi 47147 uniimaelsetpreimafv 47377 imasetpreimafvbijlemfv1 47384 2zrngnmlid 48197 2zrngnmrid 48198 |
| Copyright terms: Public domain | W3C validator |