Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne2 Structured version   Visualization version   GIF version

Theorem elnelne2 3139
 Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 3129 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
2 nelne2 3120 . 2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
31, 2sylan2b 593 1 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   ∈ wcel 2107   ≠ wne 3021   ∉ wnel 3128 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774  df-cleq 2819  df-clel 2898  df-ne 3022  df-nel 3129 This theorem is referenced by:  nelrnfvne  6841  eldmrexrnb  6854  absprodnn  15952  frgrncvvdeqlem2  27993  frgrncvvdeqlem3  27994  afv0nbfvbi  43216  2zrngnmlid  44052  2zrngnmrid  44053
 Copyright terms: Public domain W3C validator