Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnelne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.) |
Ref | Expression |
---|---|
elnelne2 | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3049 | . 2 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
2 | nelne2 3041 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐵 ∈ 𝐶) → 𝐴 ≠ 𝐵) | |
3 | 1, 2 | sylan2b 593 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∉ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 |
This theorem is referenced by: nelrnfvne 6937 eldmrexrnb 6950 absprodnn 16251 frgrncvvdeqlem2 28565 frgrncvvdeqlem3 28566 afv0nbfvbi 44530 uniimaelsetpreimafv 44736 imasetpreimafvbijlemfv1 44743 2zrngnmlid 45395 2zrngnmrid 45396 |
Copyright terms: Public domain | W3C validator |