MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne2 Structured version   Visualization version   GIF version

Theorem elnelne2 3044
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 3033 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
2 nelne2 3026 . 2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
31, 2sylan2b 594 1 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2111  wne 2928  wnel 3032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033
This theorem is referenced by:  nelrnfvne  7010  eldmrexrnb  7025  absprodnn  16529  chnrev  18533  frgrncvvdeqlem2  30280  frgrncvvdeqlem3  30281  afv0nbfvbi  47261  uniimaelsetpreimafv  47506  imasetpreimafvbijlemfv1  47513  2zrngnmlid  48365  2zrngnmrid  48366
  Copyright terms: Public domain W3C validator