MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne2 Structured version   Visualization version   GIF version

Theorem elnelne2 3064
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 3053 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
2 nelne2 3046 . 2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
31, 2sylan2b 593 1 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wne 2946  wnel 3052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053
This theorem is referenced by:  nelrnfvne  7111  eldmrexrnb  7126  absprodnn  16665  frgrncvvdeqlem2  30332  frgrncvvdeqlem3  30333  afv0nbfvbi  47066  uniimaelsetpreimafv  47270  imasetpreimafvbijlemfv1  47277  2zrngnmlid  47978  2zrngnmrid  47979
  Copyright terms: Public domain W3C validator