MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne2 Structured version   Visualization version   GIF version

Theorem elnelne2 3056
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 3045 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
2 nelne2 3038 . 2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
31, 2sylan2b 594 1 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2106  wne 2938  wnel 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-clel 2814  df-ne 2939  df-nel 3045
This theorem is referenced by:  nelrnfvne  7097  eldmrexrnb  7112  absprodnn  16652  frgrncvvdeqlem2  30329  frgrncvvdeqlem3  30330  afv0nbfvbi  47101  uniimaelsetpreimafv  47321  imasetpreimafvbijlemfv1  47328  2zrngnmlid  48099  2zrngnmrid  48100
  Copyright terms: Public domain W3C validator