MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne2 Structured version   Visualization version   GIF version

Theorem elnelne2 3060
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 3050 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
2 nelne2 3042 . 2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
31, 2sylan2b 594 1 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wne 2943  wnel 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816  df-ne 2944  df-nel 3050
This theorem is referenced by:  nelrnfvne  6955  eldmrexrnb  6968  absprodnn  16323  frgrncvvdeqlem2  28664  frgrncvvdeqlem3  28665  afv0nbfvbi  44643  uniimaelsetpreimafv  44848  imasetpreimafvbijlemfv1  44855  2zrngnmlid  45507  2zrngnmrid  45508
  Copyright terms: Public domain W3C validator