MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelne2 Structured version   Visualization version   GIF version

Theorem elnelne2 3049
Description: Two classes are different if they don't belong to the same class. (Contributed by AV, 28-Jan-2020.)
Assertion
Ref Expression
elnelne2 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)

Proof of Theorem elnelne2
StepHypRef Expression
1 df-nel 3038 . 2 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
2 nelne2 3031 . 2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
31, 2sylan2b 594 1 ((𝐴𝐶𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wne 2933  wnel 3037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2728  df-clel 2810  df-ne 2934  df-nel 3038
This theorem is referenced by:  nelrnfvne  7072  eldmrexrnb  7087  absprodnn  16642  frgrncvvdeqlem2  30286  frgrncvvdeqlem3  30287  afv0nbfvbi  47147  uniimaelsetpreimafv  47377  imasetpreimafvbijlemfv1  47384  2zrngnmlid  48197  2zrngnmrid  48198
  Copyright terms: Public domain W3C validator