| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsnlpligALT | Structured version Visualization version GIF version | ||
| Description: Alternate version of nsnlplig 30467 using the predicate ∉ instead of ¬ ∈ and whose proof is shorter. (Contributed by AV, 5-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nsnlpligALT | ⊢ (𝐺 ∈ Plig → {𝐴} ∉ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ ∪ 𝐺 = ∪ 𝐺 | |
| 2 | 1 | l2p 30465 | . . 3 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) |
| 3 | elsni 4623 | . . . . . . . 8 ⊢ (𝑎 ∈ {𝐴} → 𝑎 = 𝐴) | |
| 4 | elsni 4623 | . . . . . . . 8 ⊢ (𝑏 ∈ {𝐴} → 𝑏 = 𝐴) | |
| 5 | eqtr3 2758 | . . . . . . . . 9 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐴) → 𝑎 = 𝑏) | |
| 6 | eqneqall 2944 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (𝑎 ≠ 𝑏 → {𝐴} ∉ 𝐺)) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐴) → (𝑎 ≠ 𝑏 → {𝐴} ∉ 𝐺)) |
| 8 | 3, 4, 7 | syl2an 596 | . . . . . . 7 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → (𝑎 ≠ 𝑏 → {𝐴} ∉ 𝐺)) |
| 9 | 8 | impcom 407 | . . . . . 6 ⊢ ((𝑎 ≠ 𝑏 ∧ (𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) → {𝐴} ∉ 𝐺) |
| 10 | 9 | 3impb 1114 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺)) |
| 12 | 11 | rexlimivv 3187 | . . 3 ⊢ (∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺) |
| 13 | 2, 12 | syl 17 | . 2 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → {𝐴} ∉ 𝐺) |
| 14 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∉ 𝐺) → {𝐴} ∉ 𝐺) | |
| 15 | 13, 14 | pm2.61danel 3051 | 1 ⊢ (𝐺 ∈ Plig → {𝐴} ∉ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∉ wnel 3037 ∃wrex 3061 {csn 4606 ∪ cuni 4888 Pligcplig 30460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-v 3466 df-ss 3948 df-sn 4607 df-uni 4889 df-plig 30461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |