Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsnlpligALT | Structured version Visualization version GIF version |
Description: Alternate version of nsnlplig 28843 using the predicate ∉ instead of ¬ ∈ and whose proof is shorter. (Contributed by AV, 5-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nsnlpligALT | ⊢ (𝐺 ∈ Plig → {𝐴} ∉ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐺 = ∪ 𝐺 | |
2 | 1 | l2p 28841 | . . 3 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) |
3 | elsni 4578 | . . . . . . . 8 ⊢ (𝑎 ∈ {𝐴} → 𝑎 = 𝐴) | |
4 | elsni 4578 | . . . . . . . 8 ⊢ (𝑏 ∈ {𝐴} → 𝑏 = 𝐴) | |
5 | eqtr3 2764 | . . . . . . . . 9 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐴) → 𝑎 = 𝑏) | |
6 | eqneqall 2954 | . . . . . . . . 9 ⊢ (𝑎 = 𝑏 → (𝑎 ≠ 𝑏 → {𝐴} ∉ 𝐺)) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐴) → (𝑎 ≠ 𝑏 → {𝐴} ∉ 𝐺)) |
8 | 3, 4, 7 | syl2an 596 | . . . . . . 7 ⊢ ((𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → (𝑎 ≠ 𝑏 → {𝐴} ∉ 𝐺)) |
9 | 8 | impcom 408 | . . . . . 6 ⊢ ((𝑎 ≠ 𝑏 ∧ (𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) → {𝐴} ∉ 𝐺) |
10 | 9 | 3impb 1114 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺)) |
12 | 11 | rexlimivv 3221 | . . 3 ⊢ (∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺) |
13 | 2, 12 | syl 17 | . 2 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → {𝐴} ∉ 𝐺) |
14 | simpr 485 | . 2 ⊢ ((𝐺 ∈ Plig ∧ {𝐴} ∉ 𝐺) → {𝐴} ∉ 𝐺) | |
15 | 13, 14 | pm2.61danel 3063 | 1 ⊢ (𝐺 ∈ Plig → {𝐴} ∉ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∉ wnel 3049 ∃wrex 3065 {csn 4561 ∪ cuni 4839 Pligcplig 28836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 df-uni 4840 df-plig 28837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |