MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsnlpligALT Structured version   Visualization version   GIF version

Theorem nsnlpligALT 28976
Description: Alternate version of nsnlplig 28975 using the predicate instead of ¬ ∈ and whose proof is shorter. (Contributed by AV, 5-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nsnlpligALT (𝐺 ∈ Plig → {𝐴} ∉ 𝐺)

Proof of Theorem nsnlpligALT
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 𝐺 = 𝐺
21l2p 28973 . . 3 ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → ∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}))
3 elsni 4587 . . . . . . . 8 (𝑎 ∈ {𝐴} → 𝑎 = 𝐴)
4 elsni 4587 . . . . . . . 8 (𝑏 ∈ {𝐴} → 𝑏 = 𝐴)
5 eqtr3 2762 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = 𝐴) → 𝑎 = 𝑏)
6 eqneqall 2951 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎𝑏 → {𝐴} ∉ 𝐺))
75, 6syl 17 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐴) → (𝑎𝑏 → {𝐴} ∉ 𝐺))
83, 4, 7syl2an 596 . . . . . . 7 ((𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → (𝑎𝑏 → {𝐴} ∉ 𝐺))
98impcom 408 . . . . . 6 ((𝑎𝑏 ∧ (𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴})) → {𝐴} ∉ 𝐺)
1093impb 1114 . . . . 5 ((𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺)
1110a1i 11 . . . 4 ((𝑎 𝐺𝑏 𝐺) → ((𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺))
1211rexlimivv 3192 . . 3 (∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ {𝐴} ∧ 𝑏 ∈ {𝐴}) → {𝐴} ∉ 𝐺)
132, 12syl 17 . 2 ((𝐺 ∈ Plig ∧ {𝐴} ∈ 𝐺) → {𝐴} ∉ 𝐺)
14 simpr 485 . 2 ((𝐺 ∈ Plig ∧ {𝐴} ∉ 𝐺) → {𝐴} ∉ 𝐺)
1513, 14pm2.61danel 3060 1 (𝐺 ∈ Plig → {𝐴} ∉ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wnel 3046  wrex 3070  {csn 4570   cuni 4849  Pligcplig 28968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1543  df-ex 1781  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-v 3442  df-in 3903  df-ss 3913  df-sn 4571  df-uni 4850  df-plig 28969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator