![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon1le1 | Structured version Visualization version GIF version |
Description: There is at most one (closed) walk on vertex 𝑋 of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1le1 | ⊢ (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2727 | . . . . 5 ⊢ (ClWWalksNOn‘𝐺) = (ClWWalksNOn‘𝐺) | |
3 | eqid 2727 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 1, 2, 3 | clwwlknon1loop 29882 | . . . 4 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩}) |
5 | fveq2 6891 | . . . . . 6 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘{⟨“𝑋”⟩})) | |
6 | s1cli 14573 | . . . . . . 7 ⊢ ⟨“𝑋”⟩ ∈ Word V | |
7 | hashsng 14346 | . . . . . . 7 ⊢ (⟨“𝑋”⟩ ∈ Word V → (♯‘{⟨“𝑋”⟩}) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{⟨“𝑋”⟩}) = 1 |
9 | 5, 8 | eqtrdi 2783 | . . . . 5 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 1) |
10 | 1le1 11858 | . . . . 5 ⊢ 1 ≤ 1 | |
11 | 9, 10 | eqbrtrdi 5181 | . . . 4 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
12 | 4, 11 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
13 | 1, 2, 3 | clwwlknon1nloop 29883 | . . . . 5 ⊢ ({𝑋} ∉ (Edg‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
15 | fveq2 6891 | . . . . . 6 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅)) | |
16 | hash0 14344 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
17 | 15, 16 | eqtrdi 2783 | . . . . 5 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0) |
18 | 0le1 11753 | . . . . 5 ⊢ 0 ≤ 1 | |
19 | 17, 18 | eqbrtrdi 5181 | . . . 4 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
20 | 14, 19 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
21 | 12, 20 | pm2.61danel 3055 | . 2 ⊢ (𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
22 | id 22 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (Vtx‘𝐺)) | |
23 | 22 | intnanrd 489 | . . . . . 6 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ)) |
24 | clwwlknon0 29877 | . . . . . 6 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
26 | 25 | fveq2d 6895 | . . . 4 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅)) |
27 | 26, 16 | eqtrdi 2783 | . . 3 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0) |
28 | 27, 18 | eqbrtrdi 5181 | . 2 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
29 | 21, 28 | pm2.61i 182 | 1 ⊢ (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∉ wnel 3041 Vcvv 3469 ∅c0 4318 {csn 4624 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 0cc0 11124 1c1 11125 ≤ cle 11265 ℕcn 12228 ♯chash 14307 Word cword 14482 ⟨“cs1 14563 Vtxcvtx 28783 Edgcedg 28834 ClWWalksNOncclwwlknon 29871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-xnn0 12561 df-z 12575 df-uz 12839 df-fz 13503 df-fzo 13646 df-hash 14308 df-word 14483 df-lsw 14531 df-s1 14564 df-clwwlk 29766 df-clwwlkn 29809 df-clwwlknon 29872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |