![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon1le1 | Structured version Visualization version GIF version |
Description: There is at most one (closed) walk on vertex 𝑋 of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
Ref | Expression |
---|---|
clwwlknon1le1 | ⊢ (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | eqid 2732 | . . . . 5 ⊢ (ClWWalksNOn‘𝐺) = (ClWWalksNOn‘𝐺) | |
3 | eqid 2732 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
4 | 1, 2, 3 | clwwlknon1loop 29348 | . . . 4 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩}) |
5 | fveq2 6891 | . . . . . 6 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘{⟨“𝑋”⟩})) | |
6 | s1cli 14554 | . . . . . . 7 ⊢ ⟨“𝑋”⟩ ∈ Word V | |
7 | hashsng 14328 | . . . . . . 7 ⊢ (⟨“𝑋”⟩ ∈ Word V → (♯‘{⟨“𝑋”⟩}) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{⟨“𝑋”⟩}) = 1 |
9 | 5, 8 | eqtrdi 2788 | . . . . 5 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 1) |
10 | 1le1 11841 | . . . . 5 ⊢ 1 ≤ 1 | |
11 | 9, 10 | eqbrtrdi 5187 | . . . 4 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
12 | 4, 11 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
13 | 1, 2, 3 | clwwlknon1nloop 29349 | . . . . 5 ⊢ ({𝑋} ∉ (Edg‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
14 | 13 | adantl 482 | . . . 4 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
15 | fveq2 6891 | . . . . . 6 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅)) | |
16 | hash0 14326 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
17 | 15, 16 | eqtrdi 2788 | . . . . 5 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0) |
18 | 0le1 11736 | . . . . 5 ⊢ 0 ≤ 1 | |
19 | 17, 18 | eqbrtrdi 5187 | . . . 4 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
20 | 14, 19 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
21 | 12, 20 | pm2.61danel 3060 | . 2 ⊢ (𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
22 | id 22 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (Vtx‘𝐺)) | |
23 | 22 | intnanrd 490 | . . . . . 6 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ)) |
24 | clwwlknon0 29343 | . . . . . 6 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) | |
25 | 23, 24 | syl 17 | . . . . 5 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
26 | 25 | fveq2d 6895 | . . . 4 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅)) |
27 | 26, 16 | eqtrdi 2788 | . . 3 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0) |
28 | 27, 18 | eqbrtrdi 5187 | . 2 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
29 | 21, 28 | pm2.61i 182 | 1 ⊢ (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 Vcvv 3474 ∅c0 4322 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 ≤ cle 11248 ℕcn 12211 ♯chash 14289 Word cword 14463 ⟨“cs1 14544 Vtxcvtx 28253 Edgcedg 28304 ClWWalksNOncclwwlknon 29337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-lsw 14512 df-s1 14545 df-clwwlk 29232 df-clwwlkn 29275 df-clwwlknon 29338 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |