Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1le1 Structured version   Visualization version   GIF version

Theorem clwwlknon1le1 27794
 Description: There is at most one (closed) walk on vertex 𝑋 of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.)
Assertion
Ref Expression
clwwlknon1le1 (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1

Proof of Theorem clwwlknon1le1
StepHypRef Expression
1 eqid 2826 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2826 . . . . 5 (ClWWalksNOn‘𝐺) = (ClWWalksNOn‘𝐺)
3 eqid 2826 . . . . 5 (Edg‘𝐺) = (Edg‘𝐺)
41, 2, 3clwwlknon1loop 27791 . . . 4 ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩})
5 fveq2 6667 . . . . . 6 ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘{⟨“𝑋”⟩}))
6 s1cli 13949 . . . . . . 7 ⟨“𝑋”⟩ ∈ Word V
7 hashsng 13720 . . . . . . 7 (⟨“𝑋”⟩ ∈ Word V → (♯‘{⟨“𝑋”⟩}) = 1)
86, 7ax-mp 5 . . . . . 6 (♯‘{⟨“𝑋”⟩}) = 1
95, 8syl6eq 2877 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 1)
10 1le1 11257 . . . . 5 1 ≤ 1
119, 10eqbrtrdi 5102 . . . 4 ((𝑋(ClWWalksNOn‘𝐺)1) = {⟨“𝑋”⟩} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1)
124, 11syl 17 . . 3 ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1)
131, 2, 3clwwlknon1nloop 27792 . . . . 5 ({𝑋} ∉ (Edg‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
1413adantl 482 . . . 4 ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
15 fveq2 6667 . . . . . 6 ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅))
16 hash0 13718 . . . . . 6 (♯‘∅) = 0
1715, 16syl6eq 2877 . . . . 5 ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0)
18 0le1 11152 . . . . 5 0 ≤ 1
1917, 18eqbrtrdi 5102 . . . 4 ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1)
2014, 19syl 17 . . 3 ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1)
2112, 20pm2.61danel 3142 . 2 (𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1)
22 id 22 . . . . . . 7 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (Vtx‘𝐺))
2322intnanrd 490 . . . . . 6 𝑋 ∈ (Vtx‘𝐺) → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ))
24 clwwlknon0 27786 . . . . . 6 (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2523, 24syl 17 . . . . 5 𝑋 ∈ (Vtx‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅)
2625fveq2d 6671 . . . 4 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅))
2726, 16syl6eq 2877 . . 3 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0)
2827, 18eqbrtrdi 5102 . 2 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1)
2921, 28pm2.61i 183 1 (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 396   = wceq 1530   ∈ wcel 2107   ∉ wnel 3128  Vcvv 3500  ∅c0 4295  {csn 4564   class class class wbr 5063  ‘cfv 6352  (class class class)co 7148  0cc0 10526  1c1 10527   ≤ cle 10665  ℕcn 11627  ♯chash 13680  Word cword 13851  ⟨“cs1 13939  Vtxcvtx 26695  Edgcedg 26746  ClWWalksNOncclwwlknon 27780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-lsw 13905  df-s1 13940  df-clwwlk 27674  df-clwwlkn 27717  df-clwwlknon 27781 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator