| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clwwlknon1le1 | Structured version Visualization version GIF version | ||
| Description: There is at most one (closed) walk on vertex 𝑋 of length 1 as word over the set of vertices. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Mar-2022.) |
| Ref | Expression |
|---|---|
| clwwlknon1le1 | ⊢ (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (ClWWalksNOn‘𝐺) = (ClWWalksNOn‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
| 4 | 1, 2, 3 | clwwlknon1loop 30042 | . . . 4 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = {〈“𝑋”〉}) |
| 5 | fveq2 6822 | . . . . . 6 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {〈“𝑋”〉} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘{〈“𝑋”〉})) | |
| 6 | s1cli 14512 | . . . . . . 7 ⊢ 〈“𝑋”〉 ∈ Word V | |
| 7 | hashsng 14276 | . . . . . . 7 ⊢ (〈“𝑋”〉 ∈ Word V → (♯‘{〈“𝑋”〉}) = 1) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{〈“𝑋”〉}) = 1 |
| 9 | 5, 8 | eqtrdi 2780 | . . . . 5 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {〈“𝑋”〉} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 1) |
| 10 | 1le1 11748 | . . . . 5 ⊢ 1 ≤ 1 | |
| 11 | 9, 10 | eqbrtrdi 5131 | . . . 4 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = {〈“𝑋”〉} → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∈ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
| 13 | 1, 2, 3 | clwwlknon1nloop 30043 | . . . . 5 ⊢ ({𝑋} ∉ (Edg‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
| 15 | fveq2 6822 | . . . . . 6 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅)) | |
| 16 | hash0 14274 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . 5 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0) |
| 18 | 0le1 11643 | . . . . 5 ⊢ 0 ≤ 1 | |
| 19 | 17, 18 | eqbrtrdi 5131 | . . . 4 ⊢ ((𝑋(ClWWalksNOn‘𝐺)1) = ∅ → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
| 20 | 14, 19 | syl 17 | . . 3 ⊢ ((𝑋 ∈ (Vtx‘𝐺) ∧ {𝑋} ∉ (Edg‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
| 21 | 12, 20 | pm2.61danel 3043 | . 2 ⊢ (𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
| 22 | id 22 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ 𝑋 ∈ (Vtx‘𝐺)) | |
| 23 | 22 | intnanrd 489 | . . . . . 6 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → ¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ)) |
| 24 | clwwlknon0 30037 | . . . . . 6 ⊢ (¬ (𝑋 ∈ (Vtx‘𝐺) ∧ 1 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) | |
| 25 | 23, 24 | syl 17 | . . . . 5 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (𝑋(ClWWalksNOn‘𝐺)1) = ∅) |
| 26 | 25 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = (♯‘∅)) |
| 27 | 26, 16 | eqtrdi 2780 | . . 3 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) = 0) |
| 28 | 27, 18 | eqbrtrdi 5131 | . 2 ⊢ (¬ 𝑋 ∈ (Vtx‘𝐺) → (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1) |
| 29 | 21, 28 | pm2.61i 182 | 1 ⊢ (♯‘(𝑋(ClWWalksNOn‘𝐺)1)) ≤ 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 Vcvv 3436 ∅c0 4284 {csn 4577 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 ≤ cle 11150 ℕcn 12128 ♯chash 14237 Word cword 14420 〈“cs1 14502 Vtxcvtx 28941 Edgcedg 28992 ClWWalksNOncclwwlknon 30031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-lsw 14470 df-s1 14503 df-clwwlk 29926 df-clwwlkn 29969 df-clwwlknon 30032 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |