Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0lpligALT | Structured version Visualization version GIF version |
Description: Alternate version of n0lplig 28845 using the predicate ∉ instead of ¬ ∈ and whose proof bypasses nsnlplig 28843. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
n0lpligALT | ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐺 = ∪ 𝐺 | |
2 | 1 | l2p 28841 | . . 3 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅)) |
3 | noel 4264 | . . . . . . 7 ⊢ ¬ 𝑎 ∈ ∅ | |
4 | 3 | pm2.21i 119 | . . . . . 6 ⊢ (𝑎 ∈ ∅ → ∅ ∉ 𝐺) |
5 | 4 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
6 | 5 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)) |
7 | 6 | rexlimivv 3221 | . . 3 ⊢ (∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺) |
9 | simpr 485 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺) | |
10 | 8, 9 | pm2.61danel 3063 | 1 ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 ∉ wnel 3049 ∃wrex 3065 ∅c0 4256 ∪ cuni 4839 Pligcplig 28836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-uni 4840 df-plig 28837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |