MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lpligALT Structured version   Visualization version   GIF version

Theorem n0lpligALT 29724
Description: Alternate version of n0lplig 29723 using the predicate instead of ¬ ∈ and whose proof bypasses nsnlplig 29721. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
n0lpligALT (𝐺 ∈ Plig → ∅ ∉ 𝐺)

Proof of Theorem n0lpligALT
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 𝐺 = 𝐺
21l2p 29719 . . 3 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅))
3 noel 4329 . . . . . . 7 ¬ 𝑎 ∈ ∅
43pm2.21i 119 . . . . . 6 (𝑎 ∈ ∅ → ∅ ∉ 𝐺)
543ad2ant2 1134 . . . . 5 ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
65a1i 11 . . . 4 ((𝑎 𝐺𝑏 𝐺) → ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺))
76rexlimivv 3199 . . 3 (∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
82, 7syl 17 . 2 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺)
9 simpr 485 . 2 ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺)
108, 9pm2.61danel 3060 1 (𝐺 ∈ Plig → ∅ ∉ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106  wne 2940  wnel 3046  wrex 3070  c0 4321   cuni 4907  Pligcplig 29714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-v 3476  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-uni 4908  df-plig 29715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator