MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lpligALT Structured version   Visualization version   GIF version

Theorem n0lpligALT 30516
Description: Alternate version of n0lplig 30515 using the predicate instead of ¬ ∈ and whose proof bypasses nsnlplig 30513. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
n0lpligALT (𝐺 ∈ Plig → ∅ ∉ 𝐺)

Proof of Theorem n0lpligALT
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 𝐺 = 𝐺
21l2p 30511 . . 3 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅))
3 noel 4360 . . . . . . 7 ¬ 𝑎 ∈ ∅
43pm2.21i 119 . . . . . 6 (𝑎 ∈ ∅ → ∅ ∉ 𝐺)
543ad2ant2 1134 . . . . 5 ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
65a1i 11 . . . 4 ((𝑎 𝐺𝑏 𝐺) → ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺))
76rexlimivv 3207 . . 3 (∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
82, 7syl 17 . 2 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺)
9 simpr 484 . 2 ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺)
108, 9pm2.61danel 3066 1 (𝐺 ∈ Plig → ∅ ∉ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wne 2946  wnel 3052  wrex 3076  c0 4352   cuni 4931  Pligcplig 30506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-uni 4932  df-plig 30507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator