MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lpligALT Structured version   Visualization version   GIF version

Theorem n0lpligALT 30004
Description: Alternate version of n0lplig 30003 using the predicate instead of ¬ ∈ and whose proof bypasses nsnlplig 30001. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
n0lpligALT (𝐺 ∈ Plig → ∅ ∉ 𝐺)

Proof of Theorem n0lpligALT
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 𝐺 = 𝐺
21l2p 29999 . . 3 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅))
3 noel 4329 . . . . . . 7 ¬ 𝑎 ∈ ∅
43pm2.21i 119 . . . . . 6 (𝑎 ∈ ∅ → ∅ ∉ 𝐺)
543ad2ant2 1132 . . . . 5 ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
65a1i 11 . . . 4 ((𝑎 𝐺𝑏 𝐺) → ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺))
76rexlimivv 3197 . . 3 (∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
82, 7syl 17 . 2 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺)
9 simpr 483 . 2 ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺)
108, 9pm2.61danel 3058 1 (𝐺 ∈ Plig → ∅ ∉ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085  wcel 2104  wne 2938  wnel 3044  wrex 3068  c0 4321   cuni 4907  Pligcplig 29994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-v 3474  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-uni 4908  df-plig 29995
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator