MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0lpligALT Structured version   Visualization version   GIF version

Theorem n0lpligALT 29135
Description: Alternate version of n0lplig 29134 using the predicate instead of ¬ ∈ and whose proof bypasses nsnlplig 29132. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
n0lpligALT (𝐺 ∈ Plig → ∅ ∉ 𝐺)

Proof of Theorem n0lpligALT
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 𝐺 = 𝐺
21l2p 29130 . . 3 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅))
3 noel 4278 . . . . . . 7 ¬ 𝑎 ∈ ∅
43pm2.21i 119 . . . . . 6 (𝑎 ∈ ∅ → ∅ ∉ 𝐺)
543ad2ant2 1133 . . . . 5 ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
65a1i 11 . . . 4 ((𝑎 𝐺𝑏 𝐺) → ((𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺))
76rexlimivv 3192 . . 3 (∃𝑎 𝐺𝑏 𝐺(𝑎𝑏𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)
82, 7syl 17 . 2 ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺)
9 simpr 485 . 2 ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺)
108, 9pm2.61danel 3060 1 (𝐺 ∈ Plig → ∅ ∉ 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2105  wne 2940  wnel 3046  wrex 3070  c0 4270   cuni 4853  Pligcplig 29125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-v 3443  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4271  df-uni 4854  df-plig 29126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator