Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0lpligALT | Structured version Visualization version GIF version |
Description: Alternate version of n0lplig 28746 using the predicate ∉ instead of ¬ ∈ and whose proof bypasses nsnlplig 28744. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
n0lpligALT | ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐺 = ∪ 𝐺 | |
2 | 1 | l2p 28742 | . . 3 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅)) |
3 | noel 4261 | . . . . . . 7 ⊢ ¬ 𝑎 ∈ ∅ | |
4 | 3 | pm2.21i 119 | . . . . . 6 ⊢ (𝑎 ∈ ∅ → ∅ ∉ 𝐺) |
5 | 4 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
6 | 5 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)) |
7 | 6 | rexlimivv 3220 | . . 3 ⊢ (∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺) |
9 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺) | |
10 | 8, 9 | pm2.61danel 3062 | 1 ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 ∃wrex 3064 ∅c0 4253 ∪ cuni 4836 Pligcplig 28737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-uni 4837 df-plig 28738 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |