| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0lpligALT | Structured version Visualization version GIF version | ||
| Description: Alternate version of n0lplig 30469 using the predicate ∉ instead of ¬ ∈ and whose proof bypasses nsnlplig 30467. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| n0lpligALT | ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ ∪ 𝐺 = ∪ 𝐺 | |
| 2 | 1 | l2p 30465 | . . 3 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅)) |
| 3 | noel 4318 | . . . . . . 7 ⊢ ¬ 𝑎 ∈ ∅ | |
| 4 | 3 | pm2.21i 119 | . . . . . 6 ⊢ (𝑎 ∈ ∅ → ∅ ∉ 𝐺) |
| 5 | 4 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
| 6 | 5 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)) |
| 7 | 6 | rexlimivv 3187 | . . 3 ⊢ (∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺) |
| 9 | simpr 484 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺) | |
| 10 | 8, 9 | pm2.61danel 3051 | 1 ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2933 ∉ wnel 3037 ∃wrex 3061 ∅c0 4313 ∪ cuni 4888 Pligcplig 30460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-uni 4889 df-plig 30461 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |