![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0lpligALT | Structured version Visualization version GIF version |
Description: Alternate version of n0lplig 27893 using the predicate ∉ instead of ¬ ∈ and whose proof bypasses nsnlplig 27891. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
n0lpligALT | ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . 4 ⊢ ∪ 𝐺 = ∪ 𝐺 | |
2 | 1 | l2p 27889 | . . 3 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅)) |
3 | noel 4148 | . . . . . . 7 ⊢ ¬ 𝑎 ∈ ∅ | |
4 | 3 | pm2.21i 117 | . . . . . 6 ⊢ (𝑎 ∈ ∅ → ∅ ∉ 𝐺) |
5 | 4 | 3ad2ant2 1170 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
6 | 5 | a1i 11 | . . . 4 ⊢ ((𝑎 ∈ ∪ 𝐺 ∧ 𝑏 ∈ ∪ 𝐺) → ((𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺)) |
7 | 6 | rexlimivv 3246 | . . 3 ⊢ (∃𝑎 ∈ ∪ 𝐺∃𝑏 ∈ ∪ 𝐺(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ ∅ ∧ 𝑏 ∈ ∅) → ∅ ∉ 𝐺) |
8 | 2, 7 | syl 17 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∈ 𝐺) → ∅ ∉ 𝐺) |
9 | simpr 479 | . 2 ⊢ ((𝐺 ∈ Plig ∧ ∅ ∉ 𝐺) → ∅ ∉ 𝐺) | |
10 | 8, 9 | pm2.61danel 3116 | 1 ⊢ (𝐺 ∈ Plig → ∅ ∉ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 ∈ wcel 2166 ≠ wne 2999 ∉ wnel 3102 ∃wrex 3118 ∅c0 4144 ∪ cuni 4658 Pligcplig 27884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-v 3416 df-dif 3801 df-nul 4145 df-uni 4659 df-plig 27885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |