Proof of Theorem bnj907
Step | Hyp | Ref
| Expression |
1 | | bnj907.4 |
. 2
⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
2 | | bnj907.1 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
3 | | bnj907.2 |
. . . . . . . . 9
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
4 | | bnj907.3 |
. . . . . . . . 9
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
5 | | bnj907.5 |
. . . . . . . . 9
⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
6 | | bnj907.6 |
. . . . . . . . 9
⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
7 | | bnj907.13 |
. . . . . . . . 9
⊢ 𝐷 = (ω ∖
{∅}) |
8 | | bnj907.14 |
. . . . . . . . 9
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
9 | 2, 3, 4, 1, 5, 6, 7, 8 | bnj1021 32946 |
. . . . . . . 8
⊢
∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) |
10 | | bnj907.7 |
. . . . . . . . . . . 12
⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
11 | | bnj907.8 |
. . . . . . . . . . . 12
⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
12 | | bnj907.9 |
. . . . . . . . . . . 12
⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
13 | | bnj907.10 |
. . . . . . . . . . . 12
⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
14 | | bnj907.11 |
. . . . . . . . . . . 12
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
15 | | bnj907.12 |
. . . . . . . . . . . 12
⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
16 | | bnj907.15 |
. . . . . . . . . . . 12
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
17 | | bnj907.16 |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
18 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑝 ∈ V |
19 | 4, 10, 11, 12, 18 | bnj919 32747 |
. . . . . . . . . . . . 13
⊢ (𝜒′ ↔ (𝑝 ∈ 𝐷 ∧ 𝑓 Fn 𝑝 ∧ 𝜑′ ∧ 𝜓′)) |
20 | 17 | bnj918 32746 |
. . . . . . . . . . . . 13
⊢ 𝐺 ∈ V |
21 | 19, 13, 14, 15, 20 | bnj976 32757 |
. . . . . . . . . . . 12
⊢ (𝜒″ ↔ (𝑝 ∈ 𝐷 ∧ 𝐺 Fn 𝑝 ∧ 𝜑″ ∧ 𝜓″)) |
22 | 2, 3, 4, 1, 5, 6, 10, 11, 12, 13, 14, 15, 7, 8, 16, 17, 21 | bnj1020 32945 |
. . . . . . . . . . 11
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
23 | 22 | ax-gen 1798 |
. . . . . . . . . 10
⊢
∀𝑚((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
24 | | 19.29r 1877 |
. . . . . . . . . . 11
⊢
((∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) ∧ ∀𝑚((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) → ∃𝑚((𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) ∧ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
25 | | pm3.33 762 |
. . . . . . . . . . 11
⊢ (((𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) ∧ ((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) → (𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
26 | 24, 25 | bnj593 32725 |
. . . . . . . . . 10
⊢
((∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) ∧ ∀𝑚((𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) → ∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
27 | 23, 26 | mpan2 688 |
. . . . . . . . 9
⊢
(∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) → ∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
28 | 27 | 2eximi 1838 |
. . . . . . . 8
⊢
(∃𝑛∃𝑖∃𝑚(𝜃 → (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) → ∃𝑛∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
29 | 9, 28 | bnj101 32702 |
. . . . . . 7
⊢
∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
30 | | 19.9v 1987 |
. . . . . . 7
⊢
(∃𝑓∃𝑛∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ∃𝑛∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
31 | 29, 30 | mpbi 229 |
. . . . . 6
⊢
∃𝑛∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
32 | | 19.9v 1987 |
. . . . . 6
⊢
(∃𝑛∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
33 | 31, 32 | mpbi 229 |
. . . . 5
⊢
∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
34 | | 19.9v 1987 |
. . . . 5
⊢
(∃𝑖∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
35 | 33, 34 | mpbi 229 |
. . . 4
⊢
∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
36 | | 19.9v 1987 |
. . . 4
⊢
(∃𝑚(𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ (𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
37 | 35, 36 | mpbi 229 |
. . 3
⊢ (𝜃 → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
38 | 1 | bnj1254 32789 |
. . 3
⊢ (𝜃 → 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) |
39 | 37, 38 | sseldd 3922 |
. 2
⊢ (𝜃 → 𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) |
40 | 1, 39 | bnj978 32929 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅)) |