MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucncn Structured version   Visualization version   GIF version

Theorem ucncn 24179
Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Hypotheses
Ref Expression
ucncn.j 𝐽 = (TopOpen‘𝑅)
ucncn.k 𝐾 = (TopOpen‘𝑆)
ucncn.1 (𝜑𝑅 ∈ UnifSp)
ucncn.2 (𝜑𝑆 ∈ UnifSp)
ucncn.3 (𝜑𝑅 ∈ TopSp)
ucncn.4 (𝜑𝑆 ∈ TopSp)
ucncn.5 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
Assertion
Ref Expression
ucncn (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucncn
Dummy variables 𝑟 𝑎 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucncn.5 . . . 4 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
2 ucncn.1 . . . . . 6 (𝜑𝑅 ∈ UnifSp)
3 eqid 2730 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2730 . . . . . . . 8 (UnifSt‘𝑅) = (UnifSt‘𝑅)
5 ucncn.j . . . . . . . 8 𝐽 = (TopOpen‘𝑅)
63, 4, 5isusp 24156 . . . . . . 7 (𝑅 ∈ UnifSp ↔ ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑅))))
76simplbi 497 . . . . . 6 (𝑅 ∈ UnifSp → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
82, 7syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
9 ucncn.2 . . . . . 6 (𝜑𝑆 ∈ UnifSp)
10 eqid 2730 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2730 . . . . . . . 8 (UnifSt‘𝑆) = (UnifSt‘𝑆)
12 ucncn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑆)
1310, 11, 12isusp 24156 . . . . . . 7 (𝑆 ∈ UnifSp ↔ ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝐾 = (unifTop‘(UnifSt‘𝑆))))
1413simplbi 497 . . . . . 6 (𝑆 ∈ UnifSp → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
159, 14syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
16 isucn 24172 . . . . 5 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆))) → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
178, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
181, 17mpbid 232 . . 3 (𝜑 → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))))
1918simpld 494 . 2 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
20 cnvimass 6056 . . . . 5 (𝐹𝑎) ⊆ dom 𝐹
2119fdmd 6701 . . . . . 6 (𝜑 → dom 𝐹 = (Base‘𝑅))
2221adantr 480 . . . . 5 ((𝜑𝑎𝐾) → dom 𝐹 = (Base‘𝑅))
2320, 22sseqtrid 3992 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ⊆ (Base‘𝑅))
24 simplll 774 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝜑)
25 simpr 484 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑠 ∈ (UnifSt‘𝑆))
2623ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → (𝐹𝑎) ⊆ (Base‘𝑅))
27 simplr 768 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (𝐹𝑎))
2826, 27sseldd 3950 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
2918simprd 495 . . . . . . . . . . . 12 (𝜑 → ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3029r19.21bi 3230 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
31 r19.12 3290 . . . . . . . . . . 11 (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3230, 31syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3332r19.21bi 3230 . . . . . . . . 9 (((𝜑𝑠 ∈ (UnifSt‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3424, 25, 28, 33syl21anc 837 . . . . . . . 8 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3534adantr 480 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3624ad3antrrr 730 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝜑)
378ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
38 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑟 ∈ (UnifSt‘𝑅))
39 ustrel 24106 . . . . . . . . . . . 12 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4037, 38, 39syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4140adantr 480 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → Rel 𝑟)
4236, 8syl 17 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
43 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑟 ∈ (UnifSt‘𝑅))
4428ad3antrrr 730 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑥 ∈ (Base‘𝑅))
45 ustimasn 24123 . . . . . . . . . . 11 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
4642, 43, 44, 45syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
47 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
48 simplr 768 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (Base‘𝑅))
49 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
5015ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
51 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑠 ∈ (UnifSt‘𝑆))
52 ustrel 24106 . . . . . . . . . . . . . . . . . . . 20 (((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → Rel 𝑠)
5350, 51, 52syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑠)
54 elrelimasn 6060 . . . . . . . . . . . . . . . . . . 19 (Rel 𝑠 → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5655biimpar 477 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}))
5749, 56sseldd 3950 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
5857adantlr 715 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
59 ffn 6691 . . . . . . . . . . . . . . . . 17 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
60 elpreima 7033 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑅) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6119, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6261ad7antr 738 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6348, 58, 62mpbir2and 713 . . . . . . . . . . . . . 14 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (𝐹𝑎))
6463ex 412 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6564ralrimiva 3126 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6665adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
67 r19.26 3092 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) ↔ (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))))
68 pm3.33 764 . . . . . . . . . . . . 13 (((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → (𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
6968ralimi 3067 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7067, 69sylbir 235 . . . . . . . . . . 11 ((∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7147, 66, 70syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
72 simpl2l 1227 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → Rel 𝑟)
73 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝑟 “ {𝑥}))
74 elrelimasn 6060 . . . . . . . . . . . . . . 15 (Rel 𝑟 → (𝑦 ∈ (𝑟 “ {𝑥}) ↔ 𝑥𝑟𝑦))
7574biimpa 476 . . . . . . . . . . . . . 14 ((Rel 𝑟𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
7672, 73, 75syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
77 breq2 5114 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑥𝑟𝑧𝑥𝑟𝑦))
78 eleq1w 2812 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑧 ∈ (𝐹𝑎) ↔ 𝑦 ∈ (𝐹𝑎)))
7977, 78imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)) ↔ (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎))))
80 simpl3 1194 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
81 simpl2r 1228 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
8281, 73sseldd 3950 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (Base‘𝑅))
8379, 80, 82rspcdva 3592 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎)))
8476, 83mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝐹𝑎))
8584ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑦 ∈ (𝑟 “ {𝑥}) → 𝑦 ∈ (𝐹𝑎)))
8685ssrdv 3955 . . . . . . . . . 10 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8736, 41, 46, 71, 86syl121anc 1377 . . . . . . . . 9 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8887ex 412 . . . . . . . 8 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
8988reximdva 3147 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
9035, 89mpd 15 . . . . . 6 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
91 sneq 4602 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → {𝑦} = {(𝐹𝑥)})
9291imaeq2d 6034 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝑠 “ {𝑦}) = (𝑠 “ {(𝐹𝑥)}))
9392sseq1d 3981 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝑠 “ {𝑦}) ⊆ 𝑎 ↔ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
9493rexbidv 3158 . . . . . . 7 (𝑦 = (𝐹𝑥) → (∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎 ↔ ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
95 simpr 484 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝑎𝐾)
9613simprbi 496 . . . . . . . . . . . . 13 (𝑆 ∈ UnifSp → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
979, 96syl 17 . . . . . . . . . . . 12 (𝜑𝐾 = (unifTop‘(UnifSt‘𝑆)))
9897adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
9995, 98eleqtrd 2831 . . . . . . . . . 10 ((𝜑𝑎𝐾) → 𝑎 ∈ (unifTop‘(UnifSt‘𝑆)))
100 elutop 24128 . . . . . . . . . . . 12 ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10115, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
102101adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐾) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10399, 102mpbid 232 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎))
104103simprd 495 . . . . . . . 8 ((𝜑𝑎𝐾) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
105104adantr 480 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
106 elpreima 7033 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
10719, 59, 1063syl 18 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
108107adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
109108biimpa 476 . . . . . . . 8 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎))
110109simprd 495 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝐹𝑥) ∈ 𝑎)
11194, 105, 110rspcdva 3592 . . . . . 6 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
11290, 111r19.29a 3142 . . . . 5 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
113112ralrimiva 3126 . . . 4 ((𝜑𝑎𝐾) → ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
1146simprbi 496 . . . . . . . 8 (𝑅 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
1152, 114syl 17 . . . . . . 7 (𝜑𝐽 = (unifTop‘(UnifSt‘𝑅)))
116115adantr 480 . . . . . 6 ((𝜑𝑎𝐾) → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
117116eleq2d 2815 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ (𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅))))
118 elutop 24128 . . . . . . 7 ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
1198, 118syl 17 . . . . . 6 (𝜑 → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
120119adantr 480 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
121117, 120bitrd 279 . . . 4 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
12223, 113, 121mpbir2and 713 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
123122ralrimiva 3126 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)
124 ucncn.3 . . . 4 (𝜑𝑅 ∈ TopSp)
1253, 5istps 22828 . . . 4 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑅)))
126124, 125sylib 218 . . 3 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑅)))
127 ucncn.4 . . . 4 (𝜑𝑆 ∈ TopSp)
12810, 12istps 22828 . . . 4 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝑆)))
129127, 128sylib 218 . . 3 (𝜑𝐾 ∈ (TopOn‘(Base‘𝑆)))
130 iscn 23129 . . 3 ((𝐽 ∈ (TopOn‘(Base‘𝑅)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝑆))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
131126, 129, 130syl2anc 584 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
13219, 123, 131mpbir2and 713 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  {csn 4592   class class class wbr 5110  ccnv 5640  dom cdm 5641  cima 5644  Rel wrel 5646   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  TopOpenctopn 17391  TopOnctopon 22804  TopSpctps 22826   Cn ccn 23118  UnifOncust 24094  unifTopcutop 24125  UnifStcuss 24148  UnifSpcusp 24149   Cnucucn 24169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-topon 22805  df-topsp 22827  df-cn 23121  df-ust 24095  df-utop 24126  df-usp 24152  df-ucn 24170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator