MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucncn Structured version   Visualization version   GIF version

Theorem ucncn 24199
Description: Uniform continuity implies continuity. Deduction form. Proposition 1 of [BourbakiTop1] p. II.6. (Contributed by Thierry Arnoux, 30-Nov-2017.)
Hypotheses
Ref Expression
ucncn.j 𝐽 = (TopOpen‘𝑅)
ucncn.k 𝐾 = (TopOpen‘𝑆)
ucncn.1 (𝜑𝑅 ∈ UnifSp)
ucncn.2 (𝜑𝑆 ∈ UnifSp)
ucncn.3 (𝜑𝑅 ∈ TopSp)
ucncn.4 (𝜑𝑆 ∈ TopSp)
ucncn.5 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
Assertion
Ref Expression
ucncn (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ucncn
Dummy variables 𝑟 𝑎 𝑠 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucncn.5 . . . 4 (𝜑𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)))
2 ucncn.1 . . . . . 6 (𝜑𝑅 ∈ UnifSp)
3 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2731 . . . . . . . 8 (UnifSt‘𝑅) = (UnifSt‘𝑅)
5 ucncn.j . . . . . . . 8 𝐽 = (TopOpen‘𝑅)
63, 4, 5isusp 24176 . . . . . . 7 (𝑅 ∈ UnifSp ↔ ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑅))))
76simplbi 497 . . . . . 6 (𝑅 ∈ UnifSp → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
82, 7syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
9 ucncn.2 . . . . . 6 (𝜑𝑆 ∈ UnifSp)
10 eqid 2731 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
11 eqid 2731 . . . . . . . 8 (UnifSt‘𝑆) = (UnifSt‘𝑆)
12 ucncn.k . . . . . . . 8 𝐾 = (TopOpen‘𝑆)
1310, 11, 12isusp 24176 . . . . . . 7 (𝑆 ∈ UnifSp ↔ ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝐾 = (unifTop‘(UnifSt‘𝑆))))
1413simplbi 497 . . . . . 6 (𝑆 ∈ UnifSp → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
159, 14syl 17 . . . . 5 (𝜑 → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
16 isucn 24192 . . . . 5 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆))) → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
178, 15, 16syl2anc 584 . . . 4 (𝜑 → (𝐹 ∈ ((UnifSt‘𝑅) Cnu(UnifSt‘𝑆)) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))))
181, 17mpbid 232 . . 3 (𝜑 → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))))
1918simpld 494 . 2 (𝜑𝐹:(Base‘𝑅)⟶(Base‘𝑆))
20 cnvimass 6030 . . . . 5 (𝐹𝑎) ⊆ dom 𝐹
2119fdmd 6661 . . . . . 6 (𝜑 → dom 𝐹 = (Base‘𝑅))
2221adantr 480 . . . . 5 ((𝜑𝑎𝐾) → dom 𝐹 = (Base‘𝑅))
2320, 22sseqtrid 3972 . . . 4 ((𝜑𝑎𝐾) → (𝐹𝑎) ⊆ (Base‘𝑅))
24 simplll 774 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝜑)
25 simpr 484 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑠 ∈ (UnifSt‘𝑆))
2623ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → (𝐹𝑎) ⊆ (Base‘𝑅))
27 simplr 768 . . . . . . . . . 10 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (𝐹𝑎))
2826, 27sseldd 3930 . . . . . . . . 9 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → 𝑥 ∈ (Base‘𝑅))
2918simprd 495 . . . . . . . . . . . 12 (𝜑 → ∀𝑠 ∈ (UnifSt‘𝑆)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3029r19.21bi 3224 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
31 r19.12 3281 . . . . . . . . . . 11 (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑥 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3230, 31syl 17 . . . . . . . . . 10 ((𝜑𝑠 ∈ (UnifSt‘𝑆)) → ∀𝑥 ∈ (Base‘𝑅)∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3332r19.21bi 3224 . . . . . . . . 9 (((𝜑𝑠 ∈ (UnifSt‘𝑆)) ∧ 𝑥 ∈ (Base‘𝑅)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3424, 25, 28, 33syl21anc 837 . . . . . . . 8 ((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3534adantr 480 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
3624ad3antrrr 730 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝜑)
378ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
38 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑟 ∈ (UnifSt‘𝑅))
39 ustrel 24127 . . . . . . . . . . . 12 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4037, 38, 39syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑟)
4140adantr 480 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → Rel 𝑟)
4236, 8syl 17 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)))
43 simplr 768 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑟 ∈ (UnifSt‘𝑅))
4428ad3antrrr 730 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → 𝑥 ∈ (Base‘𝑅))
45 ustimasn 24143 . . . . . . . . . . 11 (((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) ∧ 𝑟 ∈ (UnifSt‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
4642, 43, 44, 45syl3anc 1373 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
47 simpr 484 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)))
48 simplr 768 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (Base‘𝑅))
49 simpllr 775 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
5015ad5antr 734 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)))
51 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → 𝑠 ∈ (UnifSt‘𝑆))
52 ustrel 24127 . . . . . . . . . . . . . . . . . . . 20 (((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) → Rel 𝑠)
5350, 51, 52syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → Rel 𝑠)
54 elrelimasn 6034 . . . . . . . . . . . . . . . . . . 19 (Rel 𝑠 → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ((𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}) ↔ (𝐹𝑥)𝑠(𝐹𝑧)))
5655biimpar 477 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ (𝑠 “ {(𝐹𝑥)}))
5749, 56sseldd 3930 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
5857adantlr 715 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝐹𝑧) ∈ 𝑎)
59 ffn 6651 . . . . . . . . . . . . . . . . 17 (𝐹:(Base‘𝑅)⟶(Base‘𝑆) → 𝐹 Fn (Base‘𝑅))
60 elpreima 6991 . . . . . . . . . . . . . . . . 17 (𝐹 Fn (Base‘𝑅) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6119, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6261ad7antr 738 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑧 ∈ (𝐹𝑎) ↔ (𝑧 ∈ (Base‘𝑅) ∧ (𝐹𝑧) ∈ 𝑎)))
6348, 58, 62mpbir2and 713 . . . . . . . . . . . . . 14 ((((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) ∧ (𝐹𝑥)𝑠(𝐹𝑧)) → 𝑧 ∈ (𝐹𝑎))
6463ex 412 . . . . . . . . . . . . 13 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ 𝑧 ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6564ralrimiva 3124 . . . . . . . . . . . 12 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
6665adantr 480 . . . . . . . . . . 11 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎)))
67 r19.26 3092 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) ↔ (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))))
68 pm3.33 764 . . . . . . . . . . . . 13 (((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → (𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
6968ralimi 3069 . . . . . . . . . . . 12 (∀𝑧 ∈ (Base‘𝑅)((𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7067, 69sylbir 235 . . . . . . . . . . 11 ((∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) ∧ ∀𝑧 ∈ (Base‘𝑅)((𝐹𝑥)𝑠(𝐹𝑧) → 𝑧 ∈ (𝐹𝑎))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
7147, 66, 70syl2anc 584 . . . . . . . . . 10 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
72 simpl2l 1227 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → Rel 𝑟)
73 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝑟 “ {𝑥}))
74 elrelimasn 6034 . . . . . . . . . . . . . . 15 (Rel 𝑟 → (𝑦 ∈ (𝑟 “ {𝑥}) ↔ 𝑥𝑟𝑦))
7574biimpa 476 . . . . . . . . . . . . . 14 ((Rel 𝑟𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
7672, 73, 75syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑥𝑟𝑦)
77 breq2 5093 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑥𝑟𝑧𝑥𝑟𝑦))
78 eleq1w 2814 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → (𝑧 ∈ (𝐹𝑎) ↔ 𝑦 ∈ (𝐹𝑎)))
7977, 78imbi12d 344 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → ((𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)) ↔ (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎))))
80 simpl3 1194 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎)))
81 simpl2r 1228 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑟 “ {𝑥}) ⊆ (Base‘𝑅))
8281, 73sseldd 3930 . . . . . . . . . . . . . 14 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (Base‘𝑅))
8379, 80, 82rspcdva 3573 . . . . . . . . . . . . 13 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → (𝑥𝑟𝑦𝑦 ∈ (𝐹𝑎)))
8476, 83mpd 15 . . . . . . . . . . . 12 (((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) ∧ 𝑦 ∈ (𝑟 “ {𝑥})) → 𝑦 ∈ (𝐹𝑎))
8584ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑦 ∈ (𝑟 “ {𝑥}) → 𝑦 ∈ (𝐹𝑎)))
8685ssrdv 3935 . . . . . . . . . 10 ((𝜑 ∧ (Rel 𝑟 ∧ (𝑟 “ {𝑥}) ⊆ (Base‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧𝑧 ∈ (𝐹𝑎))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8736, 41, 46, 71, 86syl121anc 1377 . . . . . . . . 9 (((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) ∧ ∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧))) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
8887ex 412 . . . . . . . 8 ((((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) ∧ 𝑟 ∈ (UnifSt‘𝑅)) → (∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → (𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
8988reximdva 3145 . . . . . . 7 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → (∃𝑟 ∈ (UnifSt‘𝑅)∀𝑧 ∈ (Base‘𝑅)(𝑥𝑟𝑧 → (𝐹𝑥)𝑠(𝐹𝑧)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎)))
9035, 89mpd 15 . . . . . 6 (((((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) ∧ 𝑠 ∈ (UnifSt‘𝑆)) ∧ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
91 sneq 4583 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → {𝑦} = {(𝐹𝑥)})
9291imaeq2d 6008 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝑠 “ {𝑦}) = (𝑠 “ {(𝐹𝑥)}))
9392sseq1d 3961 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝑠 “ {𝑦}) ⊆ 𝑎 ↔ (𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
9493rexbidv 3156 . . . . . . 7 (𝑦 = (𝐹𝑥) → (∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎 ↔ ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎))
95 simpr 484 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝑎𝐾)
9613simprbi 496 . . . . . . . . . . . . 13 (𝑆 ∈ UnifSp → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
979, 96syl 17 . . . . . . . . . . . 12 (𝜑𝐾 = (unifTop‘(UnifSt‘𝑆)))
9897adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐾) → 𝐾 = (unifTop‘(UnifSt‘𝑆)))
9995, 98eleqtrd 2833 . . . . . . . . . 10 ((𝜑𝑎𝐾) → 𝑎 ∈ (unifTop‘(UnifSt‘𝑆)))
100 elutop 24148 . . . . . . . . . . . 12 ((UnifSt‘𝑆) ∈ (UnifOn‘(Base‘𝑆)) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10115, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
102101adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐾) → (𝑎 ∈ (unifTop‘(UnifSt‘𝑆)) ↔ (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)))
10399, 102mpbid 232 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑎 ⊆ (Base‘𝑆) ∧ ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎))
104103simprd 495 . . . . . . . 8 ((𝜑𝑎𝐾) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
105104adantr 480 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∀𝑦𝑎𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {𝑦}) ⊆ 𝑎)
106 elpreima 6991 . . . . . . . . . . 11 (𝐹 Fn (Base‘𝑅) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
10719, 59, 1063syl 18 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
108107adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐾) → (𝑥 ∈ (𝐹𝑎) ↔ (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎)))
109108biimpa 476 . . . . . . . 8 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝑥 ∈ (Base‘𝑅) ∧ (𝐹𝑥) ∈ 𝑎))
110109simprd 495 . . . . . . 7 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → (𝐹𝑥) ∈ 𝑎)
11194, 105, 110rspcdva 3573 . . . . . 6 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑠 ∈ (UnifSt‘𝑆)(𝑠 “ {(𝐹𝑥)}) ⊆ 𝑎)
11290, 111r19.29a 3140 . . . . 5 (((𝜑𝑎𝐾) ∧ 𝑥 ∈ (𝐹𝑎)) → ∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
113112ralrimiva 3124 . . . 4 ((𝜑𝑎𝐾) → ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))
1146simprbi 496 . . . . . . . 8 (𝑅 ∈ UnifSp → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
1152, 114syl 17 . . . . . . 7 (𝜑𝐽 = (unifTop‘(UnifSt‘𝑅)))
116115adantr 480 . . . . . 6 ((𝜑𝑎𝐾) → 𝐽 = (unifTop‘(UnifSt‘𝑅)))
117116eleq2d 2817 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ (𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅))))
118 elutop 24148 . . . . . . 7 ((UnifSt‘𝑅) ∈ (UnifOn‘(Base‘𝑅)) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
1198, 118syl 17 . . . . . 6 (𝜑 → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
120119adantr 480 . . . . 5 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ (unifTop‘(UnifSt‘𝑅)) ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
121117, 120bitrd 279 . . . 4 ((𝜑𝑎𝐾) → ((𝐹𝑎) ∈ 𝐽 ↔ ((𝐹𝑎) ⊆ (Base‘𝑅) ∧ ∀𝑥 ∈ (𝐹𝑎)∃𝑟 ∈ (UnifSt‘𝑅)(𝑟 “ {𝑥}) ⊆ (𝐹𝑎))))
12223, 113, 121mpbir2and 713 . . 3 ((𝜑𝑎𝐾) → (𝐹𝑎) ∈ 𝐽)
123122ralrimiva 3124 . 2 (𝜑 → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)
124 ucncn.3 . . . 4 (𝜑𝑅 ∈ TopSp)
1253, 5istps 22849 . . . 4 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘𝑅)))
126124, 125sylib 218 . . 3 (𝜑𝐽 ∈ (TopOn‘(Base‘𝑅)))
127 ucncn.4 . . . 4 (𝜑𝑆 ∈ TopSp)
12810, 12istps 22849 . . . 4 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘(Base‘𝑆)))
129127, 128sylib 218 . . 3 (𝜑𝐾 ∈ (TopOn‘(Base‘𝑆)))
130 iscn 23150 . . 3 ((𝐽 ∈ (TopOn‘(Base‘𝑅)) ∧ 𝐾 ∈ (TopOn‘(Base‘𝑆))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
131126, 129, 130syl2anc 584 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝐽)))
13219, 123, 131mpbir2and 713 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  {csn 4573   class class class wbr 5089  ccnv 5613  dom cdm 5614  cima 5617  Rel wrel 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  TopOpenctopn 17325  TopOnctopon 22825  TopSpctps 22847   Cn ccn 23139  UnifOncust 24115  unifTopcutop 24145  UnifStcuss 24168  UnifSpcusp 24169   Cnucucn 24189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-top 22809  df-topon 22826  df-topsp 22848  df-cn 23142  df-ust 24116  df-utop 24146  df-usp 24172  df-ucn 24190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator