Proof of Theorem 2sb5ndALT
Step | Hyp | Ref
| Expression |
1 | | ax6e2ndeq 42179 |
. 2
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) ↔ ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) |
2 | | anabs5 660 |
. . . 4
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
3 | | 2pm13.193 42172 |
. . . . . . . . 9
⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
4 | 3 | exbii 1850 |
. . . . . . . 8
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
5 | | hbs1 2266 |
. . . . . . . . . . . 12
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) |
6 | | id 22 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦) |
7 | | axc11 2430 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
8 | 6, 7 | syl 17 |
. . . . . . . . . . . 12
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
9 | | pm3.33 762 |
. . . . . . . . . . . 12
⊢ ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ∧ (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
10 | 5, 8, 9 | sylancr 587 |
. . . . . . . . . . 11
⊢
(∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
11 | | hbs1 2266 |
. . . . . . . . . . . . . 14
⊢ ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) |
12 | 11 | sbt 2069 |
. . . . . . . . . . . . 13
⊢ [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) |
13 | | sbi1 2074 |
. . . . . . . . . . . . 13
⊢ ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑)) |
14 | 12, 13 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) |
15 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) |
16 | | axc11n 2426 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦) |
17 | 16 | con3i 154 |
. . . . . . . . . . . . . 14
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥) |
18 | 15, 17 | syl 17 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥) |
19 | | sbal2 2534 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
21 | | imbi2 349 |
. . . . . . . . . . . . 13
⊢ (([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))) |
22 | 21 | biimpac 479 |
. . . . . . . . . . . 12
⊢ ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ∧ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
23 | 14, 20, 22 | sylancr 587 |
. . . . . . . . . . 11
⊢ (¬
∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
24 | 10, 23 | pm2.61i 182 |
. . . . . . . . . 10
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) |
25 | 24 | nf5i 2142 |
. . . . . . . . 9
⊢
Ⅎ𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 |
26 | 25 | 19.41 2228 |
. . . . . . . 8
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
27 | 4, 26 | bitr3i 276 |
. . . . . . 7
⊢
(∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
28 | 27 | exbii 1850 |
. . . . . 6
⊢
(∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
29 | | nfs1v 2153 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 |
30 | 29 | 19.41 2228 |
. . . . . 6
⊢
(∃𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) |
31 | 28, 30 | bitr2i 275 |
. . . . 5
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) |
32 | 31 | anbi2i 623 |
. . . 4
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
33 | 2, 32 | bitr3i 276 |
. . 3
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
34 | | pm5.32 574 |
. . 3
⊢
((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)))) |
35 | 33, 34 | mpbir 230 |
. 2
⊢
(∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |
36 | 1, 35 | sylbi 216 |
1
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥∃𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))) |