Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sb5ndALT Structured version   Visualization version   GIF version

Theorem 2sb5ndALT 40111
Description: Equivalence for double substitution 2sb5 2252 without distinct 𝑥, 𝑦 requirement. 2sb5nd 39730 is derived from 2sb5ndVD 40089. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 40089. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2sb5ndALT ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem 2sb5ndALT
StepHypRef Expression
1 ax6e2ndeq 39729 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
2 anabs5 653 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3 2pm13.193 39722 . . . . . . . . 9 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
43exbii 1892 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
5 hbs1 2255 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
6 id 22 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
7 axc11 2396 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
86, 7syl 17 . . . . . . . . . . . 12 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
9 pm3.33 755 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ∧ (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
105, 8, 9sylancr 581 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
11 hbs1 2255 . . . . . . . . . . . . . 14 ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
1211sbt 2496 . . . . . . . . . . . . 13 [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
13 sbi1 2468 . . . . . . . . . . . . 13 ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑))
1412, 13ax-mp 5 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑)
15 id 22 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
16 axc11n 2392 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
1716con3i 152 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1815, 17syl 17 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
19 sbal2 2540 . . . . . . . . . . . . 13 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2018, 19syl 17 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21 imbi2 340 . . . . . . . . . . . . 13 (([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)))
2221biimpac 472 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ∧ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2314, 20, 22sylancr 581 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2410, 23pm2.61i 177 . . . . . . . . . 10 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
2524nf5i 2140 . . . . . . . . 9 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
262519.41 2221 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
274, 26bitr3i 269 . . . . . . 7 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2827exbii 1892 . . . . . 6 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
29 nfs1v 2254 . . . . . . 7 𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
302919.41 2221 . . . . . 6 (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3128, 30bitr2i 268 . . . . 5 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3231anbi2i 616 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
332, 32bitr3i 269 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
34 pm5.32 569 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
3533, 34mpbir 223 . 2 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
361, 35sylbi 209 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  wal 1599   = wceq 1601  wex 1823  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-ne 2970  df-v 3400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator