Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sb5ndALT Structured version   Visualization version   GIF version

Theorem 2sb5ndALT 42552
Description: Equivalence for double substitution 2sb5 2272 without distinct 𝑥, 𝑦 requirement. 2sb5nd 42180 is derived from 2sb5ndVD 42530. The proof is derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in 2sb5ndVD 42530. (Contributed by Alan Sare, 19-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2sb5ndALT ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Distinct variable groups:   𝑥,𝑢   𝑦,𝑢   𝑥,𝑣   𝑦,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢)

Proof of Theorem 2sb5ndALT
StepHypRef Expression
1 ax6e2ndeq 42179 . 2 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
2 anabs5 660 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3 2pm13.193 42172 . . . . . . . . 9 (((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
43exbii 1850 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
5 hbs1 2266 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
6 id 22 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦)
7 axc11 2430 . . . . . . . . . . . . 13 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
86, 7syl 17 . . . . . . . . . . . 12 (∀𝑥 𝑥 = 𝑦 → (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
9 pm3.33 762 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ∧ (∀𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
105, 8, 9sylancr 587 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
11 hbs1 2266 . . . . . . . . . . . . . 14 ([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
1211sbt 2069 . . . . . . . . . . . . 13 [𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑)
13 sbi1 2074 . . . . . . . . . . . . 13 ([𝑢 / 𝑥]([𝑣 / 𝑦]𝜑 → ∀𝑦[𝑣 / 𝑦]𝜑) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑))
1412, 13ax-mp 5 . . . . . . . . . . . 12 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑)
15 id 22 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
16 axc11n 2426 . . . . . . . . . . . . . . 15 (∀𝑦 𝑦 = 𝑥 → ∀𝑥 𝑥 = 𝑦)
1716con3i 154 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
1815, 17syl 17 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑦 = 𝑥)
19 sbal2 2534 . . . . . . . . . . . . 13 (¬ ∀𝑦 𝑦 = 𝑥 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2018, 19syl 17 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
21 imbi2 349 . . . . . . . . . . . . 13 (([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → (([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ↔ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)))
2221biimpac 479 . . . . . . . . . . . 12 ((([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → [𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑) ∧ ([𝑢 / 𝑥]∀𝑦[𝑣 / 𝑦]𝜑 ↔ ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2314, 20, 22sylancr 587 . . . . . . . . . . 11 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2410, 23pm2.61i 182 . . . . . . . . . 10 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 → ∀𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑)
2524nf5i 2142 . . . . . . . . 9 𝑦[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
262519.41 2228 . . . . . . . 8 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
274, 26bitr3i 276 . . . . . . 7 (∃𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ (∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
2827exbii 1850 . . . . . 6 (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ↔ ∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
29 nfs1v 2153 . . . . . . 7 𝑥[𝑢 / 𝑥][𝑣 / 𝑦]𝜑
302919.41 2228 . . . . . 6 (∃𝑥(∃𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑))
3128, 30bitr2i 275 . . . . 5 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
3231anbi2i 623 . . . 4 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
332, 32bitr3i 276 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
34 pm5.32 574 . . 3 ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))) ↔ ((∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))))
3533, 34mpbir 230 . 2 (∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
361, 35sylbi 216 1 ((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  wal 1537   = wceq 1539  wex 1782  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator