Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem26 Structured version   Visualization version   GIF version

Theorem stoweidlem26 46022
Description: This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here 𝐿 is used to represent j in the paper, 𝐷 is used to represent A in the paper, 𝑆 is used to represent t, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem26.1 𝑡𝐹
stoweidlem26.2 𝑗𝜑
stoweidlem26.3 𝑡𝜑
stoweidlem26.4 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem26.5 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem26.6 (𝜑𝑁 ∈ ℕ)
stoweidlem26.7 (𝜑𝑇 ∈ V)
stoweidlem26.8 (𝜑𝐿 ∈ (1...𝑁))
stoweidlem26.9 (𝜑𝑆 ∈ ((𝐷𝐿) ∖ (𝐷‘(𝐿 − 1))))
stoweidlem26.10 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem26.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem26.12 (𝜑𝐸 < (1 / 3))
stoweidlem26.13 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
stoweidlem26.14 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
stoweidlem26.15 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
Assertion
Ref Expression
stoweidlem26 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆))
Distinct variable groups:   𝑖,𝑗,𝑡,𝐸   𝑖,𝐿,𝑗,𝑡   𝑖,𝑁,𝑗,𝑡   𝑆,𝑖,𝑡   𝜑,𝑖   𝑗,𝐹   𝑇,𝑗,𝑡   𝑡,𝑋
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝐵(𝑡,𝑖,𝑗)   𝐷(𝑡,𝑖,𝑗)   𝑆(𝑗)   𝑇(𝑖)   𝐹(𝑡,𝑖)   𝑋(𝑖,𝑗)

Proof of Theorem stoweidlem26
StepHypRef Expression
1 1re 11240 . . . . . . . 8 1 ∈ ℝ
2 eleq1 2823 . . . . . . . 8 (𝐿 = 1 → (𝐿 ∈ ℝ ↔ 1 ∈ ℝ))
31, 2mpbiri 258 . . . . . . 7 (𝐿 = 1 → 𝐿 ∈ ℝ)
43adantl 481 . . . . . 6 ((𝜑𝐿 = 1) → 𝐿 ∈ ℝ)
5 4re 12329 . . . . . . . 8 4 ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝐿 = 1) → 4 ∈ ℝ)
7 3re 12325 . . . . . . . 8 3 ∈ ℝ
87a1i 11 . . . . . . 7 ((𝜑𝐿 = 1) → 3 ∈ ℝ)
9 3ne0 12351 . . . . . . . 8 3 ≠ 0
109a1i 11 . . . . . . 7 ((𝜑𝐿 = 1) → 3 ≠ 0)
116, 8, 10redivcld 12074 . . . . . 6 ((𝜑𝐿 = 1) → (4 / 3) ∈ ℝ)
124, 11resubcld 11670 . . . . 5 ((𝜑𝐿 = 1) → (𝐿 − (4 / 3)) ∈ ℝ)
13 stoweidlem26.11 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1413rpred 13056 . . . . . 6 (𝜑𝐸 ∈ ℝ)
1514adantr 480 . . . . 5 ((𝜑𝐿 = 1) → 𝐸 ∈ ℝ)
1612, 15remulcld 11270 . . . 4 ((𝜑𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ)
17 0red 11243 . . . 4 ((𝜑𝐿 = 1) → 0 ∈ ℝ)
18 fzfid 13996 . . . . . 6 (𝜑 → (0...𝑁) ∈ Fin)
1914adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
20 stoweidlem26.13 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
21 stoweidlem26.9 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ ((𝐷𝐿) ∖ (𝐷‘(𝐿 − 1))))
22 eldif 3941 . . . . . . . . . . . . . 14 (𝑆 ∈ ((𝐷𝐿) ∖ (𝐷‘(𝐿 − 1))) ↔ (𝑆 ∈ (𝐷𝐿) ∧ ¬ 𝑆 ∈ (𝐷‘(𝐿 − 1))))
2321, 22sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∈ (𝐷𝐿) ∧ ¬ 𝑆 ∈ (𝐷‘(𝐿 − 1))))
2423simpld 494 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (𝐷𝐿))
25 stoweidlem26.4 . . . . . . . . . . . . 13 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
26 oveq1 7417 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐿 → (𝑗 − (1 / 3)) = (𝐿 − (1 / 3)))
2726oveq1d 7425 . . . . . . . . . . . . . . 15 (𝑗 = 𝐿 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝐿 − (1 / 3)) · 𝐸))
2827breq2d 5136 . . . . . . . . . . . . . 14 (𝑗 = 𝐿 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
2928rabbidv 3428 . . . . . . . . . . . . 13 (𝑗 = 𝐿 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)})
30 fz1ssfz0 13645 . . . . . . . . . . . . . 14 (1...𝑁) ⊆ (0...𝑁)
31 stoweidlem26.8 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (1...𝑁))
3230, 31sselid 3961 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (0...𝑁))
33 stoweidlem26.7 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ V)
34 rabexg 5312 . . . . . . . . . . . . . 14 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)} ∈ V)
3533, 34syl 17 . . . . . . . . . . . . 13 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)} ∈ V)
3625, 29, 32, 35fvmptd3 7014 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐿) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)})
3724, 36eleqtrd 2837 . . . . . . . . . . 11 (𝜑𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)})
38 nfcv 2899 . . . . . . . . . . . 12 𝑡𝑆
39 nfcv 2899 . . . . . . . . . . . 12 𝑡𝑇
40 stoweidlem26.1 . . . . . . . . . . . . . 14 𝑡𝐹
4140, 38nffv 6891 . . . . . . . . . . . . 13 𝑡(𝐹𝑆)
42 nfcv 2899 . . . . . . . . . . . . 13 𝑡
43 nfcv 2899 . . . . . . . . . . . . 13 𝑡((𝐿 − (1 / 3)) · 𝐸)
4441, 42, 43nfbr 5171 . . . . . . . . . . . 12 𝑡(𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)
45 fveq2 6881 . . . . . . . . . . . . 13 (𝑡 = 𝑆 → (𝐹𝑡) = (𝐹𝑆))
4645breq1d 5134 . . . . . . . . . . . 12 (𝑡 = 𝑆 → ((𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸) ↔ (𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
4738, 39, 44, 46elrabf 3672 . . . . . . . . . . 11 (𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)} ↔ (𝑆𝑇 ∧ (𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
4837, 47sylib 218 . . . . . . . . . 10 (𝜑 → (𝑆𝑇 ∧ (𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
4948simpld 494 . . . . . . . . 9 (𝜑𝑆𝑇)
5049adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑆𝑇)
5120, 50ffvelcdmd 7080 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
5219, 51remulcld 11270 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
5318, 52fsumrecl 15755 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
5453adantr 480 . . . 4 ((𝜑𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
555, 7, 9redivcli 12013 . . . . . . 7 (4 / 3) ∈ ℝ
5655a1i 11 . . . . . 6 ((𝜑𝐿 = 1) → (4 / 3) ∈ ℝ)
574, 56resubcld 11670 . . . . 5 ((𝜑𝐿 = 1) → (𝐿 − (4 / 3)) ∈ ℝ)
584recnd 11268 . . . . . . . 8 ((𝜑𝐿 = 1) → 𝐿 ∈ ℂ)
5958subid1d 11588 . . . . . . 7 ((𝜑𝐿 = 1) → (𝐿 − 0) = 𝐿)
60 3cn 12326 . . . . . . . . . 10 3 ∈ ℂ
6160, 9dividi 11979 . . . . . . . . 9 (3 / 3) = 1
62 3lt4 12419 . . . . . . . . . 10 3 < 4
63 3pos 12350 . . . . . . . . . . 11 0 < 3
647, 5, 7, 63ltdiv1ii 12176 . . . . . . . . . 10 (3 < 4 ↔ (3 / 3) < (4 / 3))
6562, 64mpbi 230 . . . . . . . . 9 (3 / 3) < (4 / 3)
6661, 65eqbrtrri 5147 . . . . . . . 8 1 < (4 / 3)
67 breq1 5127 . . . . . . . . 9 (𝐿 = 1 → (𝐿 < (4 / 3) ↔ 1 < (4 / 3)))
6867adantl 481 . . . . . . . 8 ((𝜑𝐿 = 1) → (𝐿 < (4 / 3) ↔ 1 < (4 / 3)))
6966, 68mpbiri 258 . . . . . . 7 ((𝜑𝐿 = 1) → 𝐿 < (4 / 3))
7059, 69eqbrtrd 5146 . . . . . 6 ((𝜑𝐿 = 1) → (𝐿 − 0) < (4 / 3))
714, 17, 56, 70ltsub23d 11847 . . . . 5 ((𝜑𝐿 = 1) → (𝐿 − (4 / 3)) < 0)
7213rpgt0d 13059 . . . . . 6 (𝜑 → 0 < 𝐸)
7372adantr 480 . . . . 5 ((𝜑𝐿 = 1) → 0 < 𝐸)
74 mulltgt0 45013 . . . . 5 ((((𝐿 − (4 / 3)) ∈ ℝ ∧ (𝐿 − (4 / 3)) < 0) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝐿 − (4 / 3)) · 𝐸) < 0)
7557, 71, 15, 73, 74syl22anc 838 . . . 4 ((𝜑𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < 0)
76 0cn 11232 . . . . . . . 8 0 ∈ ℂ
77 fsumconst 15811 . . . . . . . 8 (((0...𝑁) ∈ Fin ∧ 0 ∈ ℂ) → Σ𝑖 ∈ (0...𝑁)0 = ((♯‘(0...𝑁)) · 0))
7818, 76, 77sylancl 586 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...𝑁)0 = ((♯‘(0...𝑁)) · 0))
79 hashcl 14379 . . . . . . . . 9 ((0...𝑁) ∈ Fin → (♯‘(0...𝑁)) ∈ ℕ0)
80 nn0cn 12516 . . . . . . . . 9 ((♯‘(0...𝑁)) ∈ ℕ0 → (♯‘(0...𝑁)) ∈ ℂ)
8118, 79, 803syl 18 . . . . . . . 8 (𝜑 → (♯‘(0...𝑁)) ∈ ℂ)
8281mul01d 11439 . . . . . . 7 (𝜑 → ((♯‘(0...𝑁)) · 0) = 0)
8378, 82eqtrd 2771 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...𝑁)0 = 0)
8483adantr 480 . . . . 5 ((𝜑𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)0 = 0)
85 0red 11243 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ∈ ℝ)
8613rpge0d 13060 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
8786adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ 𝐸)
88 stoweidlem26.3 . . . . . . . . . . . 12 𝑡𝜑
89 nfv 1914 . . . . . . . . . . . 12 𝑡 𝑖 ∈ (0...𝑁)
9088, 89nfan 1899 . . . . . . . . . . 11 𝑡(𝜑𝑖 ∈ (0...𝑁))
91 nfv 1914 . . . . . . . . . . 11 𝑡0 ≤ ((𝑋𝑖)‘𝑆)
9290, 91nfim 1896 . . . . . . . . . 10 𝑡((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))
93 fveq2 6881 . . . . . . . . . . . 12 (𝑡 = 𝑆 → ((𝑋𝑖)‘𝑡) = ((𝑋𝑖)‘𝑆))
9493breq2d 5136 . . . . . . . . . . 11 (𝑡 = 𝑆 → (0 ≤ ((𝑋𝑖)‘𝑡) ↔ 0 ≤ ((𝑋𝑖)‘𝑆)))
9594imbi2d 340 . . . . . . . . . 10 (𝑡 = 𝑆 → (((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))))
96 stoweidlem26.14 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
97963expia 1121 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑡𝑇 → 0 ≤ ((𝑋𝑖)‘𝑡)))
9897com12 32 . . . . . . . . . 10 (𝑡𝑇 → ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑡)))
9938, 92, 95, 98vtoclgaf 3560 . . . . . . . . 9 (𝑆𝑇 → ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆)))
10050, 99mpcom 38 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))
10119, 51, 87, 100mulge0d 11819 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ (𝐸 · ((𝑋𝑖)‘𝑆)))
10218, 85, 52, 101fsumle 15820 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...𝑁)0 ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
103102adantr 480 . . . . 5 ((𝜑𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)0 ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
10484, 103eqbrtrrd 5148 . . . 4 ((𝜑𝐿 = 1) → 0 ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
10516, 17, 54, 75, 104ltletrd 11400 . . 3 ((𝜑𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
106 elfzelz 13546 . . . . . . . . 9 (𝐿 ∈ (1...𝑁) → 𝐿 ∈ ℤ)
107 zre 12597 . . . . . . . . 9 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
10831, 106, 1073syl 18 . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
1095a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
1107a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℝ)
1119a1i 11 . . . . . . . . 9 (𝜑 → 3 ≠ 0)
112109, 110, 111redivcld 12074 . . . . . . . 8 (𝜑 → (4 / 3) ∈ ℝ)
113108, 112resubcld 11670 . . . . . . 7 (𝜑 → (𝐿 − (4 / 3)) ∈ ℝ)
114113, 14remulcld 11270 . . . . . 6 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ)
115114adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ)
1161a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
117 stoweidlem26.6 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
11814, 117nndivred 12299 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
119116, 118resubcld 11670 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑁)) ∈ ℝ)
120108, 116resubcld 11670 . . . . . . . 8 (𝜑 → (𝐿 − 1) ∈ ℝ)
121119, 120remulcld 11270 . . . . . . 7 (𝜑 → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) ∈ ℝ)
12214, 121remulcld 11270 . . . . . 6 (𝜑 → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) ∈ ℝ)
123122adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) ∈ ℝ)
124 fzfid 13996 . . . . . . . 8 (𝜑 → (0...(𝐿 − 2)) ∈ Fin)
12531elfzelzd 13547 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℤ)
126 2z 12629 . . . . . . . . . . . . . . 15 2 ∈ ℤ
127126a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
128125, 127zsubcld 12707 . . . . . . . . . . . . 13 (𝜑 → (𝐿 − 2) ∈ ℤ)
129117nnzd 12620 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
130125zred 12702 . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ ℝ)
131 2re 12319 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
132131a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
133130, 132resubcld 11670 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 − 2) ∈ ℝ)
134117nnred 12260 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
135 0le2 12347 . . . . . . . . . . . . . . . 16 0 ≤ 2
136 0red 11243 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
137136, 132, 130lesub2d 11850 . . . . . . . . . . . . . . . 16 (𝜑 → (0 ≤ 2 ↔ (𝐿 − 2) ≤ (𝐿 − 0)))
138135, 137mpbii 233 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 − 2) ≤ (𝐿 − 0))
139125zcnd 12703 . . . . . . . . . . . . . . . 16 (𝜑𝐿 ∈ ℂ)
140139subid1d 11588 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 − 0) = 𝐿)
141138, 140breqtrd 5150 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 − 2) ≤ 𝐿)
142 elfzle2 13550 . . . . . . . . . . . . . . 15 (𝐿 ∈ (1...𝑁) → 𝐿𝑁)
14331, 142syl 17 . . . . . . . . . . . . . 14 (𝜑𝐿𝑁)
144133, 130, 134, 141, 143letrd 11397 . . . . . . . . . . . . 13 (𝜑 → (𝐿 − 2) ≤ 𝑁)
145128, 129, 1443jca 1128 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 2) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐿 − 2) ≤ 𝑁))
146 eluz2 12863 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘(𝐿 − 2)) ↔ ((𝐿 − 2) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐿 − 2) ≤ 𝑁))
147145, 146sylibr 234 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘(𝐿 − 2)))
148 fzss2 13586 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝐿 − 2)) → (0...(𝐿 − 2)) ⊆ (0...𝑁))
149147, 148syl 17 . . . . . . . . . 10 (𝜑 → (0...(𝐿 − 2)) ⊆ (0...𝑁))
150149sselda 3963 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ∈ (0...𝑁))
151150, 51syldan 591 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
152124, 151fsumrecl 15755 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ∈ ℝ)
15314, 152remulcld 11270 . . . . . 6 (𝜑 → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ)
154153adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ)
15514, 120remulcld 11270 . . . . . . . . 9 (𝜑 → (𝐸 · (𝐿 − 1)) ∈ ℝ)
15614, 14remulcld 11270 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐸) ∈ ℝ)
157155, 156resubcld 11670 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)) ∈ ℝ)
158120, 117nndivred 12299 . . . . . . . . . 10 (𝜑 → ((𝐿 − 1) / 𝑁) ∈ ℝ)
159156, 158remulcld 11270 . . . . . . . . 9 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) ∈ ℝ)
160155, 159resubcld 11670 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))) ∈ ℝ)
161120, 14resubcld 11670 . . . . . . . . . 10 (𝜑 → ((𝐿 − 1) − 𝐸) ∈ ℝ)
162116, 14readdcld 11269 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐸) ∈ ℝ)
1631, 7, 9redivcli 12013 . . . . . . . . . . . . . . 15 (1 / 3) ∈ ℝ
164163a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 / 3) ∈ ℝ)
165 stoweidlem26.12 . . . . . . . . . . . . . 14 (𝜑𝐸 < (1 / 3))
16614, 164, 116, 165ltadd2dd 11399 . . . . . . . . . . . . 13 (𝜑 → (1 + 𝐸) < (1 + (1 / 3)))
167 ax-1cn 11192 . . . . . . . . . . . . . . 15 1 ∈ ℂ
16860, 167, 60, 9divdiri 12003 . . . . . . . . . . . . . 14 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
169 3p1e4 12390 . . . . . . . . . . . . . . 15 (3 + 1) = 4
170169oveq1i 7420 . . . . . . . . . . . . . 14 ((3 + 1) / 3) = (4 / 3)
17161oveq1i 7420 . . . . . . . . . . . . . 14 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
172168, 170, 1713eqtr3ri 2768 . . . . . . . . . . . . 13 (1 + (1 / 3)) = (4 / 3)
173166, 172breqtrdi 5165 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐸) < (4 / 3))
174162, 112, 108, 173ltsub2dd 11855 . . . . . . . . . . 11 (𝜑 → (𝐿 − (4 / 3)) < (𝐿 − (1 + 𝐸)))
175167a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
17613rpcnd 13058 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
177139, 175, 176subsub4d 11630 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) − 𝐸) = (𝐿 − (1 + 𝐸)))
178174, 177breqtrrd 5152 . . . . . . . . . 10 (𝜑 → (𝐿 − (4 / 3)) < ((𝐿 − 1) − 𝐸))
179113, 161, 13, 178ltmul1dd 13111 . . . . . . . . 9 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < (((𝐿 − 1) − 𝐸) · 𝐸))
180139, 175subcld 11599 . . . . . . . . . . . 12 (𝜑 → (𝐿 − 1) ∈ ℂ)
181180, 176subcld 11599 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) − 𝐸) ∈ ℂ)
182176, 181mulcomd 11261 . . . . . . . . . 10 (𝜑 → (𝐸 · ((𝐿 − 1) − 𝐸)) = (((𝐿 − 1) − 𝐸) · 𝐸))
183176, 180, 176subdid 11698 . . . . . . . . . 10 (𝜑 → (𝐸 · ((𝐿 − 1) − 𝐸)) = ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)))
184182, 183eqtr3d 2773 . . . . . . . . 9 (𝜑 → (((𝐿 − 1) − 𝐸) · 𝐸) = ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)))
185179, 184breqtrd 5150 . . . . . . . 8 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)))
186 1zzd 12628 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
187 elfz 13535 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 ∈ (1...𝑁) ↔ (1 ≤ 𝐿𝐿𝑁)))
188125, 186, 129, 187syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐿 ∈ (1...𝑁) ↔ (1 ≤ 𝐿𝐿𝑁)))
18931, 188mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (1 ≤ 𝐿𝐿𝑁))
190189simprd 495 . . . . . . . . . . . . . 14 (𝜑𝐿𝑁)
191 zlem1lt 12649 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
192125, 129, 191syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
193190, 192mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐿 − 1) < 𝑁)
194117nngt0d 12294 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
195 ltdiv1 12111 . . . . . . . . . . . . . 14 (((𝐿 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐿 − 1) < 𝑁 ↔ ((𝐿 − 1) / 𝑁) < (𝑁 / 𝑁)))
196120, 134, 134, 194, 195syl112anc 1376 . . . . . . . . . . . . 13 (𝜑 → ((𝐿 − 1) < 𝑁 ↔ ((𝐿 − 1) / 𝑁) < (𝑁 / 𝑁)))
197193, 196mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 1) / 𝑁) < (𝑁 / 𝑁))
198117nncnd 12261 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
199117nnne0d 12295 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
200198, 199dividd 12020 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑁) = 1)
201197, 200breqtrd 5150 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) / 𝑁) < 1)
20214, 14, 72, 72mulgt0d 11395 . . . . . . . . . . . 12 (𝜑 → 0 < (𝐸 · 𝐸))
203 ltmul2 12097 . . . . . . . . . . . 12 ((((𝐿 − 1) / 𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐸 · 𝐸) ∈ ℝ ∧ 0 < (𝐸 · 𝐸))) → (((𝐿 − 1) / 𝑁) < 1 ↔ ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < ((𝐸 · 𝐸) · 1)))
204158, 116, 156, 202, 203syl112anc 1376 . . . . . . . . . . 11 (𝜑 → (((𝐿 − 1) / 𝑁) < 1 ↔ ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < ((𝐸 · 𝐸) · 1)))
205201, 204mpbid 232 . . . . . . . . . 10 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < ((𝐸 · 𝐸) · 1))
206176, 176mulcld 11260 . . . . . . . . . . 11 (𝜑 → (𝐸 · 𝐸) ∈ ℂ)
207206mulridd 11257 . . . . . . . . . 10 (𝜑 → ((𝐸 · 𝐸) · 1) = (𝐸 · 𝐸))
208205, 207breqtrd 5150 . . . . . . . . 9 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < (𝐸 · 𝐸))
209159, 156, 155, 208ltsub2dd 11855 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)) < ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
210114, 157, 160, 185, 209lttrd 11401 . . . . . . 7 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
211176, 198, 199divcld 12022 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑁) ∈ ℂ)
212175, 211, 180subdird 11699 . . . . . . . . . 10 (𝜑 → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) = ((1 · (𝐿 − 1)) − ((𝐸 / 𝑁) · (𝐿 − 1))))
213180mullidd 11258 . . . . . . . . . . 11 (𝜑 → (1 · (𝐿 − 1)) = (𝐿 − 1))
214213oveq1d 7425 . . . . . . . . . 10 (𝜑 → ((1 · (𝐿 − 1)) − ((𝐸 / 𝑁) · (𝐿 − 1))) = ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1))))
215212, 214eqtrd 2771 . . . . . . . . 9 (𝜑 → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) = ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1))))
216215oveq2d 7426 . . . . . . . 8 (𝜑 → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) = (𝐸 · ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1)))))
217211, 180mulcld 11260 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑁) · (𝐿 − 1)) ∈ ℂ)
218176, 180, 217subdid 11698 . . . . . . . 8 (𝜑 → (𝐸 · ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1)))) = ((𝐸 · (𝐿 − 1)) − (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1)))))
219176, 198, 180, 199div32d 12045 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑁) · (𝐿 − 1)) = (𝐸 · ((𝐿 − 1) / 𝑁)))
220219oveq2d 7426 . . . . . . . . . 10 (𝜑 → (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1))) = (𝐸 · (𝐸 · ((𝐿 − 1) / 𝑁))))
221180, 198, 199divcld 12022 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) / 𝑁) ∈ ℂ)
222176, 176, 221mulassd 11263 . . . . . . . . . 10 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) = (𝐸 · (𝐸 · ((𝐿 − 1) / 𝑁))))
223220, 222eqtr4d 2774 . . . . . . . . 9 (𝜑 → (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1))) = ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)))
224223oveq2d 7426 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1)))) = ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
225216, 218, 2243eqtrd 2775 . . . . . . 7 (𝜑 → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) = ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
226210, 225breqtrrd 5152 . . . . . 6 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))))
227226adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))))
228175, 211subcld 11599 . . . . . . . . . 10 (𝜑 → (1 − (𝐸 / 𝑁)) ∈ ℂ)
229 fsumconst 15811 . . . . . . . . . 10 (((0...(𝐿 − 2)) ∈ Fin ∧ (1 − (𝐸 / 𝑁)) ∈ ℂ) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))))
230124, 228, 229syl2anc 584 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))))
231230adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))))
232 0zd 12605 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ∈ ℤ)
23331adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ (1...𝑁))
234233elfzelzd 13547 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ ℤ)
235126a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → 2 ∈ ℤ)
236234, 235zsubcld 12707 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ∈ ℤ)
237 elnnuz 12901 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
238117, 237sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘1))
239 elfzp12 13625 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘1) → (𝐿 ∈ (1...𝑁) ↔ (𝐿 = 1 ∨ 𝐿 ∈ ((1 + 1)...𝑁))))
240238, 239syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 ∈ (1...𝑁) ↔ (𝐿 = 1 ∨ 𝐿 ∈ ((1 + 1)...𝑁))))
24131, 240mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 = 1 ∨ 𝐿 ∈ ((1 + 1)...𝑁)))
242241orcanai 1004 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ ((1 + 1)...𝑁))
243 1p1e2 12370 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
244243a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐿 = 1) → (1 + 1) = 2)
245244oveq1d 7425 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐿 = 1) → ((1 + 1)...𝑁) = (2...𝑁))
246242, 245eleqtrd 2837 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ (2...𝑁))
247 elfzle1 13549 . . . . . . . . . . . . . . 15 (𝐿 ∈ (2...𝑁) → 2 ≤ 𝐿)
248246, 247syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → 2 ≤ 𝐿)
249108adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ ℝ)
250131a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 2 ∈ ℝ)
251249, 250subge0d 11832 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → (0 ≤ (𝐿 − 2) ↔ 2 ≤ 𝐿))
252248, 251mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ≤ (𝐿 − 2))
253232, 236, 2523jca 1128 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐿 = 1) → (0 ∈ ℤ ∧ (𝐿 − 2) ∈ ℤ ∧ 0 ≤ (𝐿 − 2)))
254 eluz2 12863 . . . . . . . . . . . 12 ((𝐿 − 2) ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ (𝐿 − 2) ∈ ℤ ∧ 0 ≤ (𝐿 − 2)))
255253, 254sylibr 234 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ∈ (ℤ‘0))
256 hashfz 14450 . . . . . . . . . . 11 ((𝐿 − 2) ∈ (ℤ‘0) → (♯‘(0...(𝐿 − 2))) = (((𝐿 − 2) − 0) + 1))
257255, 256syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐿 = 1) → (♯‘(0...(𝐿 − 2))) = (((𝐿 − 2) − 0) + 1))
258 2cn 12320 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
259258a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
260139, 259subcld 11599 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 − 2) ∈ ℂ)
261260subid1d 11588 . . . . . . . . . . . . 13 (𝜑 → ((𝐿 − 2) − 0) = (𝐿 − 2))
262261oveq1d 7425 . . . . . . . . . . . 12 (𝜑 → (((𝐿 − 2) − 0) + 1) = ((𝐿 − 2) + 1))
263139, 259, 175subadd23d 11621 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 2) + 1) = (𝐿 + (1 − 2)))
264258, 167negsubdi2i 11574 . . . . . . . . . . . . . . . 16 -(2 − 1) = (1 − 2)
265 2m1e1 12371 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
266265negeqi 11480 . . . . . . . . . . . . . . . 16 -(2 − 1) = -1
267264, 266eqtr3i 2761 . . . . . . . . . . . . . . 15 (1 − 2) = -1
268267a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 − 2) = -1)
269268oveq2d 7426 . . . . . . . . . . . . 13 (𝜑 → (𝐿 + (1 − 2)) = (𝐿 + -1))
270139, 175negsubd 11605 . . . . . . . . . . . . 13 (𝜑 → (𝐿 + -1) = (𝐿 − 1))
271269, 270eqtrd 2771 . . . . . . . . . . . 12 (𝜑 → (𝐿 + (1 − 2)) = (𝐿 − 1))
272262, 263, 2713eqtrd 2775 . . . . . . . . . . 11 (𝜑 → (((𝐿 − 2) − 0) + 1) = (𝐿 − 1))
273272adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐿 = 1) → (((𝐿 − 2) − 0) + 1) = (𝐿 − 1))
274257, 273eqtrd 2771 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐿 = 1) → (♯‘(0...(𝐿 − 2))) = (𝐿 − 1))
275274oveq1d 7425 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))) = ((𝐿 − 1) · (1 − (𝐸 / 𝑁))))
276180, 228mulcomd 11261 . . . . . . . . 9 (𝜑 → ((𝐿 − 1) · (1 − (𝐸 / 𝑁))) = ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)))
277276adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 1) · (1 − (𝐸 / 𝑁))) = ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)))
278231, 275, 2773eqtrd 2775 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)))
279 fzfid 13996 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...(𝐿 − 2)) ∈ Fin)
280 fzn0 13560 . . . . . . . . 9 ((0...(𝐿 − 2)) ≠ ∅ ↔ (𝐿 − 2) ∈ (ℤ‘0))
281255, 280sylibr 234 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...(𝐿 − 2)) ≠ ∅)
282119ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (1 − (𝐸 / 𝑁)) ∈ ℝ)
283 simpll 766 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → 𝜑)
284150adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ∈ (0...𝑁))
285283, 284, 51syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
28649adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑆𝑇)
287 elfzelz 13546 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...(𝐿 − 2)) → 𝑖 ∈ ℤ)
288287zred 12702 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0...(𝐿 − 2)) → 𝑖 ∈ ℝ)
289288adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ∈ ℝ)
290163a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (1 / 3) ∈ ℝ)
291289, 290readdcld 11269 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝑖 + (1 / 3)) ∈ ℝ)
29214adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝐸 ∈ ℝ)
293291, 292remulcld 11270 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) · 𝐸) ∈ ℝ)
294108adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝐿 ∈ ℝ)
295131a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 2 ∈ ℝ)
296294, 295resubcld 11670 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) ∈ ℝ)
297296, 290readdcld 11269 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝐿 − 2) + (1 / 3)) ∈ ℝ)
298297, 292remulcld 11270 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (((𝐿 − 2) + (1 / 3)) · 𝐸) ∈ ℝ)
299 stoweidlem26.10 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑇⟶ℝ)
300299, 49jca 511 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹:𝑇⟶ℝ ∧ 𝑆𝑇))
301300adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐹:𝑇⟶ℝ ∧ 𝑆𝑇))
302 ffvelcdm 7076 . . . . . . . . . . . . . 14 ((𝐹:𝑇⟶ℝ ∧ 𝑆𝑇) → (𝐹𝑆) ∈ ℝ)
303301, 302syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐹𝑆) ∈ ℝ)
304 elfzle2 13550 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0...(𝐿 − 2)) → 𝑖 ≤ (𝐿 − 2))
305304adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ≤ (𝐿 − 2))
306289, 296, 290, 305leadd1dd 11856 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝑖 + (1 / 3)) ≤ ((𝐿 − 2) + (1 / 3)))
30714, 72jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
308307adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
309 lemul1 12098 . . . . . . . . . . . . . . 15 (((𝑖 + (1 / 3)) ∈ ℝ ∧ ((𝐿 − 2) + (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑖 + (1 / 3)) ≤ ((𝐿 − 2) + (1 / 3)) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (((𝐿 − 2) + (1 / 3)) · 𝐸)))
310291, 297, 308, 309syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) ≤ ((𝐿 − 2) + (1 / 3)) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (((𝐿 − 2) + (1 / 3)) · 𝐸)))
311306, 310mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) · 𝐸) ≤ (((𝐿 − 2) + (1 / 3)) · 𝐸))
312108, 132resubcld 11670 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 − 2) ∈ ℝ)
313312, 164readdcld 11269 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 − 2) + (1 / 3)) ∈ ℝ)
314313, 14remulcld 11270 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) ∈ ℝ)
315299, 49ffvelcdmd 7080 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ∈ ℝ)
316120, 164resubcld 11670 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 − 1) − (1 / 3)) ∈ ℝ)
317316, 14remulcld 11270 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 − 1) − (1 / 3)) · 𝐸) ∈ ℝ)
318 addrid 11420 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℂ → (1 + 0) = 1)
319318eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℂ → 1 = (1 + 0))
320167, 319mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 = (1 + 0))
321175subidd 11587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1 − 1) = 0)
322321eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 = (1 − 1))
323322oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + 0) = (1 + (1 − 1)))
324 addsubass 11497 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + 1) − 1) = (1 + (1 − 1)))
325324eqcomd 2742 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (1 − 1)) = ((1 + 1) − 1))
326175, 175, 175, 325syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + (1 − 1)) = ((1 + 1) − 1))
327320, 323, 3263eqtrd 2775 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 = ((1 + 1) − 1))
328327oveq2d 7426 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 − 1) = (𝐿 − ((1 + 1) − 1)))
329243a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + 1) = 2)
330329oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1 + 1) − 1) = (2 − 1))
331330oveq2d 7426 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 − ((1 + 1) − 1)) = (𝐿 − (2 − 1)))
332139, 259, 175subsubd 11627 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 − (2 − 1)) = ((𝐿 − 2) + 1))
333328, 331, 3323eqtrd 2775 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 − 1) = ((𝐿 − 2) + 1))
334333oveq1d 7425 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 − 1) − (2 / 3)) = (((𝐿 − 2) + 1) − (2 / 3)))
335258, 60, 9divcli 11988 . . . . . . . . . . . . . . . . . . . . 21 (2 / 3) ∈ ℂ
336335a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 / 3) ∈ ℂ)
337260, 175, 336addsubassd 11619 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐿 − 2) + 1) − (2 / 3)) = ((𝐿 − 2) + (1 − (2 / 3))))
338167, 60, 9divcli 11988 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 3) ∈ ℂ
339 df-3 12309 . . . . . . . . . . . . . . . . . . . . . . . 24 3 = (2 + 1)
340339oveq1i 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (3 / 3) = ((2 + 1) / 3)
341258, 167, 60, 9divdiri 12003 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 + 1) / 3) = ((2 / 3) + (1 / 3))
342340, 61, 3413eqtr3ri 2768 . . . . . . . . . . . . . . . . . . . . . 22 ((2 / 3) + (1 / 3)) = 1
343167, 335, 338, 342subaddrii 11577 . . . . . . . . . . . . . . . . . . . . 21 (1 − (2 / 3)) = (1 / 3)
344343a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 − (2 / 3)) = (1 / 3))
345344oveq2d 7426 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 − 2) + (1 − (2 / 3))) = ((𝐿 − 2) + (1 / 3)))
346334, 337, 3453eqtrd 2775 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 − 1) − (2 / 3)) = ((𝐿 − 2) + (1 / 3)))
347131, 7, 9redivcli 12013 . . . . . . . . . . . . . . . . . . . 20 (2 / 3) ∈ ℝ
348347a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2 / 3) ∈ ℝ)
349 1lt2 12416 . . . . . . . . . . . . . . . . . . . 20 1 < 2
3507, 63pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . 22 (3 ∈ ℝ ∧ 0 < 3)
3511, 131, 3503pm3.2i 1340 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3))
352 ltdiv1 12111 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 < 2 ↔ (1 / 3) < (2 / 3)))
353351, 352mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 < 2 ↔ (1 / 3) < (2 / 3)))
354349, 353mpbii 233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 / 3) < (2 / 3))
355164, 348, 120, 354ltsub2dd 11855 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 − 1) − (2 / 3)) < ((𝐿 − 1) − (1 / 3)))
356346, 355eqbrtrrd 5148 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 − 2) + (1 / 3)) < ((𝐿 − 1) − (1 / 3)))
357313, 316, 13, 356ltmul1dd 13111 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) < (((𝐿 − 1) − (1 / 3)) · 𝐸))
35823simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ¬ 𝑆 ∈ (𝐷‘(𝐿 − 1)))
359 oveq1 7417 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = (𝐿 − 1) → (𝑗 − (1 / 3)) = ((𝐿 − 1) − (1 / 3)))
360359oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = (𝐿 − 1) → ((𝑗 − (1 / 3)) · 𝐸) = (((𝐿 − 1) − (1 / 3)) · 𝐸))
361360breq2d 5136 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = (𝐿 − 1) → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
362361rabbidv 3428 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = (𝐿 − 1) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)})
363129peano2zd 12705 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑁 + 1) ∈ ℤ)
364189simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 1 ≤ 𝐿)
365134, 116readdcld 11269 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑁 + 1) ∈ ℝ)
366134lep1d 12178 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑁 ≤ (𝑁 + 1))
367108, 134, 365, 190, 366letrd 11397 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐿 ≤ (𝑁 + 1))
368186, 363, 125, 364, 367elfzd 13537 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐿 ∈ (1...(𝑁 + 1)))
369139, 175npcand 11603 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝐿 − 1) + 1) = 𝐿)
370 0p1e1 12367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 + 1) = 1
371370a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (0 + 1) = 1)
372371oveq1d 7425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1)))
373368, 369, 3723eltr4d 2850 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐿 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1)))
374 0zd 12605 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 0 ∈ ℤ)
375125, 186zsubcld 12707 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐿 − 1) ∈ ℤ)
376 fzaddel 13580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐿 − 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐿 − 1) ∈ (0...𝑁) ↔ ((𝐿 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
377374, 129, 375, 186, 376syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐿 − 1) ∈ (0...𝑁) ↔ ((𝐿 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
378373, 377mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐿 − 1) ∈ (0...𝑁))
379 rabexg 5312 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)} ∈ V)
38033, 379syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)} ∈ V)
38125, 362, 378, 380fvmptd3 7014 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐷‘(𝐿 − 1)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)})
382358, 381neleqtrd 2857 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)})
383 nfcv 2899 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡(((𝐿 − 1) − (1 / 3)) · 𝐸)
38441, 42, 383nfbr 5171 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)
38545breq1d 5134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑆 → ((𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ↔ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
38638, 39, 384, 385elrabf 3672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)} ↔ (𝑆𝑇 ∧ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
387382, 386sylnib 328 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ (𝑆𝑇 ∧ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
388 ianor 983 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑆𝑇 ∧ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)) ↔ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
389387, 388sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
390 olc 868 . . . . . . . . . . . . . . . . . . . . 21 (𝑆𝑇 → (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇))
391390anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑇 ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))) → ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))))
39249, 389, 391syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))))
393 orcom 870 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)) ↔ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇))
394393anbi2i 623 . . . . . . . . . . . . . . . . . . 19 (((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))) ↔ ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇)))
395392, 394sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇)))
396 pm4.43 1024 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ↔ ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇)))
397395, 396sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))
398317, 315ltnled 11387 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((𝐿 − 1) − (1 / 3)) · 𝐸) < (𝐹𝑆) ↔ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
399397, 398mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 − 1) − (1 / 3)) · 𝐸) < (𝐹𝑆))
400314, 317, 315, 357, 399lttrd 11401 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) < (𝐹𝑆))
401314, 315, 400ltled 11388 . . . . . . . . . . . . . 14 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) ≤ (𝐹𝑆))
402401adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (((𝐿 − 2) + (1 / 3)) · 𝐸) ≤ (𝐹𝑆))
403293, 298, 303, 311, 402letrd 11397 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆))
404 nfcv 2899 . . . . . . . . . . . . . 14 𝑡((𝑖 + (1 / 3)) · 𝐸)
405404, 42, 41nfbr 5171 . . . . . . . . . . . . 13 𝑡((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆)
40645breq2d 5136 . . . . . . . . . . . . 13 (𝑡 = 𝑆 → (((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆)))
40738, 39, 405, 406elrabf 3672 . . . . . . . . . . . 12 (𝑆 ∈ {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ↔ (𝑆𝑇 ∧ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆)))
408286, 403, 407sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑆 ∈ {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
409 stoweidlem26.5 . . . . . . . . . . . 12 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
410 oveq1 7417 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝑗 + (1 / 3)) = (𝑖 + (1 / 3)))
411410oveq1d 7425 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑖 + (1 / 3)) · 𝐸))
412411breq1d 5134 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)))
413412rabbidv 3428 . . . . . . . . . . . 12 (𝑗 = 𝑖 → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} = {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
414 rabexg 5312 . . . . . . . . . . . . . 14 (𝑇 ∈ V → {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
41533, 414syl 17 . . . . . . . . . . . . 13 (𝜑 → {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
416415adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
417409, 413, 150, 416fvmptd3 7014 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐵𝑖) = {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
418408, 417eleqtrrd 2838 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑆 ∈ (𝐵𝑖))
4191453ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → ((𝐿 − 2) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐿 − 2) ≤ 𝑁))
420419, 146sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑁 ∈ (ℤ‘(𝐿 − 2)))
421420, 148syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → (0...(𝐿 − 2)) ⊆ (0...𝑁))
422 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑖 ∈ (0...(𝐿 − 2)))
423421, 422sseldd 3964 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑖 ∈ (0...𝑁))
424 elex 3485 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐵𝑖) → 𝑆 ∈ V)
4254243ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑆 ∈ V)
426 nfcv 2899 . . . . . . . . . . . . . . . . . . 19 𝑡(0...𝑁)
427 nfrab1 3441 . . . . . . . . . . . . . . . . . . 19 𝑡{𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}
428426, 427nfmpt 5224 . . . . . . . . . . . . . . . . . 18 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
429409, 428nfcxfr 2897 . . . . . . . . . . . . . . . . 17 𝑡𝐵
430 nfcv 2899 . . . . . . . . . . . . . . . . 17 𝑡𝑖
431429, 430nffv 6891 . . . . . . . . . . . . . . . 16 𝑡(𝐵𝑖)
432431nfel2 2918 . . . . . . . . . . . . . . 15 𝑡 𝑆 ∈ (𝐵𝑖)
43388, 89, 432nf3an 1901 . . . . . . . . . . . . . 14 𝑡(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖))
434 nfv 1914 . . . . . . . . . . . . . 14 𝑡(1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆)
435433, 434nfim 1896 . . . . . . . . . . . . 13 𝑡((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
436 eleq1 2823 . . . . . . . . . . . . . . 15 (𝑡 = 𝑆 → (𝑡 ∈ (𝐵𝑖) ↔ 𝑆 ∈ (𝐵𝑖)))
4374363anbi3d 1444 . . . . . . . . . . . . . 14 (𝑡 = 𝑆 → ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖))))
43893breq2d 5136 . . . . . . . . . . . . . 14 (𝑡 = 𝑆 → ((1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆)))
439437, 438imbi12d 344 . . . . . . . . . . . . 13 (𝑡 = 𝑆 → (((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))))
440 stoweidlem26.15 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
441435, 439, 440vtoclg1f 3554 . . . . . . . . . . . 12 (𝑆 ∈ V → ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆)))
442425, 441mpcom 38 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
443423, 442syld3an2 1413 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
444418, 443mpd3an3 1464 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
445444adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
446279, 281, 282, 285, 445fsumlt 15821 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))
447278, 446eqbrtrrd 5148 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))
448121adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) ∈ ℝ)
449152adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ∈ ℝ)
450307adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
451 ltmul2 12097 . . . . . . 7 ((((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) ∈ ℝ ∧ Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ↔ (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))))
452448, 449, 450, 451syl3anc 1373 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ↔ (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))))
453447, 452mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)))
454115, 123, 154, 227, 453lttrd 11401 . . . 4 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)))
455150, 52syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
456455adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
457456recnd 11268 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
458279, 457fsumcl 15754 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
459458addridd 11440 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + 0) = Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)))
460 0red 11243 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ∈ ℝ)
461 fzfid 13996 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 1)...𝑁) ∈ Fin)
46214adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝐸 ∈ ℝ)
463 0zd 12605 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ∈ ℤ)
464129adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑁 ∈ ℤ)
465 elfzelz 13546 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝐿 − 1)...𝑁) → 𝑖 ∈ ℤ)
466465adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ ℤ)
467 0red 11243 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ∈ ℝ)
468120adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐿 − 1) ∈ ℝ)
469465zred 12702 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝐿 − 1)...𝑁) → 𝑖 ∈ ℝ)
470469adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ ℝ)
471 1m1e0 12317 . . . . . . . . . . . . . . 15 (1 − 1) = 0
472116, 108, 116, 364lesub1dd 11858 . . . . . . . . . . . . . . 15 (𝜑 → (1 − 1) ≤ (𝐿 − 1))
473471, 472eqbrtrrid 5160 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (𝐿 − 1))
474473adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ (𝐿 − 1))
475 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ ((𝐿 − 1)...𝑁))
476375adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐿 − 1) ∈ ℤ)
477 elfz 13535 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ (𝐿 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑖𝑖𝑁)))
478466, 476, 464, 477syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝑖 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑖𝑖𝑁)))
479475, 478mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → ((𝐿 − 1) ≤ 𝑖𝑖𝑁))
480479simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐿 − 1) ≤ 𝑖)
481467, 468, 470, 474, 480letrd 11397 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ 𝑖)
482 elfzle2 13550 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝐿 − 1)...𝑁) → 𝑖𝑁)
483482adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖𝑁)
484463, 464, 466, 481, 483elfzd 13537 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ (0...𝑁))
485484, 51syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
486462, 485remulcld 11270 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
487486adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
488461, 487fsumrecl 15755 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
489279, 456fsumrecl 15755 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
490 fzfid 13996 . . . . . . . . 9 (𝜑 → ((𝐿 − 1)...𝑁) ∈ Fin)
491176adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝐸 ∈ ℂ)
492491mul01d 11439 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · 0) = 0)
493484, 100syldan 591 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))
494307adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
495 lemul2 12099 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ((𝑋𝑖)‘𝑆) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (0 ≤ ((𝑋𝑖)‘𝑆) ↔ (𝐸 · 0) ≤ (𝐸 · ((𝑋𝑖)‘𝑆))))
496467, 485, 494, 495syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (0 ≤ ((𝑋𝑖)‘𝑆) ↔ (𝐸 · 0) ≤ (𝐸 · ((𝑋𝑖)‘𝑆))))
497493, 496mpbid 232 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · 0) ≤ (𝐸 · ((𝑋𝑖)‘𝑆)))
498492, 497eqbrtrrd 5148 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ (𝐸 · ((𝑋𝑖)‘𝑆)))
499490, 486, 498fsumge0 15816 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
500499adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ≤ Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
501460, 488, 489, 500leadd2dd 11857 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + 0) ≤ (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
502459, 501eqbrtrrd 5148 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) ≤ (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
503151recnd 11268 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑋𝑖)‘𝑆) ∈ ℂ)
504124, 176, 503fsummulc2 15805 . . . . . 6 (𝜑 → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) = Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)))
505504adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) = Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)))
506 stoweidlem26.2 . . . . . . . . 9 𝑗𝜑
507 elfzelz 13546 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝐿 − 2)) → 𝑗 ∈ ℤ)
508507adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ∈ ℤ)
509508zred 12702 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ∈ ℝ)
510312adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) ∈ ℝ)
511120adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 1) ∈ ℝ)
512 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ∈ (0...(𝐿 − 2)))
513 0zd 12605 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 0 ∈ ℤ)
514128adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) ∈ ℤ)
515 elfz 13535 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐿 − 2) ∈ ℤ) → (𝑗 ∈ (0...(𝐿 − 2)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝐿 − 2))))
516508, 513, 514, 515syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝑗 ∈ (0...(𝐿 − 2)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝐿 − 2))))
517512, 516mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (0 ≤ 𝑗𝑗 ≤ (𝐿 − 2)))
518517simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ≤ (𝐿 − 2))
519116, 132, 108ltsub2d 11852 . . . . . . . . . . . . . . . 16 (𝜑 → (1 < 2 ↔ (𝐿 − 2) < (𝐿 − 1)))
520349, 519mpbii 233 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 − 2) < (𝐿 − 1))
521520adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) < (𝐿 − 1))
522509, 510, 511, 518, 521lelttrd 11398 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 < (𝐿 − 1))
523509, 511ltnled 11387 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝑗 < (𝐿 − 1) ↔ ¬ (𝐿 − 1) ≤ 𝑗))
524522, 523mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → ¬ (𝐿 − 1) ≤ 𝑗)
525524intnanrd 489 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → ¬ ((𝐿 − 1) ≤ 𝑗𝑗𝑁))
526375adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 1) ∈ ℤ)
527129adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑁 ∈ ℤ)
528 elfz 13535 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ (𝐿 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑗𝑗𝑁)))
529508, 526, 527, 528syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝑗 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑗𝑗𝑁)))
530525, 529mtbird 325 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁))
531530ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0...(𝐿 − 2)) → ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁)))
532506, 531ralrimi 3244 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (0...(𝐿 − 2)) ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁))
533 disj 4430 . . . . . . . 8 (((0...(𝐿 − 2)) ∩ ((𝐿 − 1)...𝑁)) = ∅ ↔ ∀𝑗 ∈ (0...(𝐿 − 2)) ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁))
534532, 533sylibr 234 . . . . . . 7 (𝜑 → ((0...(𝐿 − 2)) ∩ ((𝐿 − 1)...𝑁)) = ∅)
535534adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → ((0...(𝐿 − 2)) ∩ ((𝐿 − 1)...𝑁)) = ∅)
536144adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ≤ 𝑁)
537128, 374, 1293jca 1128 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 2) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ))
538537adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 2) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ))
539 elfz 13535 . . . . . . . . . 10 (((𝐿 − 2) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 − 2) ∈ (0...𝑁) ↔ (0 ≤ (𝐿 − 2) ∧ (𝐿 − 2) ≤ 𝑁)))
540538, 539syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 2) ∈ (0...𝑁) ↔ (0 ≤ (𝐿 − 2) ∧ (𝐿 − 2) ≤ 𝑁)))
541252, 536, 540mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ∈ (0...𝑁))
542 fzsplit 13572 . . . . . . . 8 ((𝐿 − 2) ∈ (0...𝑁) → (0...𝑁) = ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)))
543541, 542syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...𝑁) = ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)))
544263, 269, 2703eqtrd 2775 . . . . . . . . . 10 (𝜑 → ((𝐿 − 2) + 1) = (𝐿 − 1))
545544oveq1d 7425 . . . . . . . . 9 (𝜑 → (((𝐿 − 2) + 1)...𝑁) = ((𝐿 − 1)...𝑁))
546545uneq2d 4148 . . . . . . . 8 (𝜑 → ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)) = ((0...(𝐿 − 2)) ∪ ((𝐿 − 1)...𝑁)))
547546adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)) = ((0...(𝐿 − 2)) ∪ ((𝐿 − 1)...𝑁)))
548543, 547eqtrd 2771 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...𝑁) = ((0...(𝐿 − 2)) ∪ ((𝐿 − 1)...𝑁)))
549 fzfid 13996 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...𝑁) ∈ Fin)
550176adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℂ)
55151recnd 11268 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑆) ∈ ℂ)
552550, 551mulcld 11260 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
553552adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
554535, 548, 549, 553fsumsplit 15762 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) = (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
555502, 505, 5543brtr4d 5156 . . . 4 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
556114, 153, 533jca 1128 . . . . . 6 (𝜑 → (((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ))
557556adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ))
558 ltletr 11332 . . . . 5 ((((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ) → ((((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
559557, 558syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐿 = 1) → ((((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
560454, 555, 559mp2and 699 . . 3 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
561105, 560pm2.61dan 812 . 2 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
562 sumex 15709 . . 3 Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ V
56393oveq2d 7426 . . . . 5 (𝑡 = 𝑆 → (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋𝑖)‘𝑆)))
564563sumeq2sdv 15724 . . . 4 (𝑡 = 𝑆 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
565 eqid 2736 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
566564, 565fvmptg 6989 . . 3 ((𝑆𝑇 ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ V) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
56749, 562, 566sylancl 586 . 2 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
568561, 567breqtrrd 5152 1 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  wne 2933  wral 3052  {crab 3420  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  4c4 12302  0cn0 12506  cz 12593  cuz 12857  +crp 13013  ...cfz 13529  chash 14353  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708
This theorem is referenced by:  stoweidlem34  46030
  Copyright terms: Public domain W3C validator