Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem26 Structured version   Visualization version   GIF version

Theorem stoweidlem26 46024
Description: This lemma is used to prove that there is a function 𝑔 as in the proof of [BrosowskiDeutsh] p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here 𝐿 is used to represent j in the paper, 𝐷 is used to represent A in the paper, 𝑆 is used to represent t, and 𝐸 is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem26.1 𝑡𝐹
stoweidlem26.2 𝑗𝜑
stoweidlem26.3 𝑡𝜑
stoweidlem26.4 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
stoweidlem26.5 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
stoweidlem26.6 (𝜑𝑁 ∈ ℕ)
stoweidlem26.7 (𝜑𝑇 ∈ V)
stoweidlem26.8 (𝜑𝐿 ∈ (1...𝑁))
stoweidlem26.9 (𝜑𝑆 ∈ ((𝐷𝐿) ∖ (𝐷‘(𝐿 − 1))))
stoweidlem26.10 (𝜑𝐹:𝑇⟶ℝ)
stoweidlem26.11 (𝜑𝐸 ∈ ℝ+)
stoweidlem26.12 (𝜑𝐸 < (1 / 3))
stoweidlem26.13 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
stoweidlem26.14 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
stoweidlem26.15 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
Assertion
Ref Expression
stoweidlem26 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆))
Distinct variable groups:   𝑖,𝑗,𝑡,𝐸   𝑖,𝐿,𝑗,𝑡   𝑖,𝑁,𝑗,𝑡   𝑆,𝑖,𝑡   𝜑,𝑖   𝑗,𝐹   𝑇,𝑗,𝑡   𝑡,𝑋
Allowed substitution hints:   𝜑(𝑡,𝑗)   𝐵(𝑡,𝑖,𝑗)   𝐷(𝑡,𝑖,𝑗)   𝑆(𝑗)   𝑇(𝑖)   𝐹(𝑡,𝑖)   𝑋(𝑖,𝑗)

Proof of Theorem stoweidlem26
StepHypRef Expression
1 1re 11174 . . . . . . . 8 1 ∈ ℝ
2 eleq1 2816 . . . . . . . 8 (𝐿 = 1 → (𝐿 ∈ ℝ ↔ 1 ∈ ℝ))
31, 2mpbiri 258 . . . . . . 7 (𝐿 = 1 → 𝐿 ∈ ℝ)
43adantl 481 . . . . . 6 ((𝜑𝐿 = 1) → 𝐿 ∈ ℝ)
5 4re 12270 . . . . . . . 8 4 ∈ ℝ
65a1i 11 . . . . . . 7 ((𝜑𝐿 = 1) → 4 ∈ ℝ)
7 3re 12266 . . . . . . . 8 3 ∈ ℝ
87a1i 11 . . . . . . 7 ((𝜑𝐿 = 1) → 3 ∈ ℝ)
9 3ne0 12292 . . . . . . . 8 3 ≠ 0
109a1i 11 . . . . . . 7 ((𝜑𝐿 = 1) → 3 ≠ 0)
116, 8, 10redivcld 12010 . . . . . 6 ((𝜑𝐿 = 1) → (4 / 3) ∈ ℝ)
124, 11resubcld 11606 . . . . 5 ((𝜑𝐿 = 1) → (𝐿 − (4 / 3)) ∈ ℝ)
13 stoweidlem26.11 . . . . . . 7 (𝜑𝐸 ∈ ℝ+)
1413rpred 12995 . . . . . 6 (𝜑𝐸 ∈ ℝ)
1514adantr 480 . . . . 5 ((𝜑𝐿 = 1) → 𝐸 ∈ ℝ)
1612, 15remulcld 11204 . . . 4 ((𝜑𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ)
17 0red 11177 . . . 4 ((𝜑𝐿 = 1) → 0 ∈ ℝ)
18 fzfid 13938 . . . . . 6 (𝜑 → (0...𝑁) ∈ Fin)
1914adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℝ)
20 stoweidlem26.13 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑋𝑖):𝑇⟶ℝ)
21 stoweidlem26.9 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ ((𝐷𝐿) ∖ (𝐷‘(𝐿 − 1))))
22 eldif 3924 . . . . . . . . . . . . . 14 (𝑆 ∈ ((𝐷𝐿) ∖ (𝐷‘(𝐿 − 1))) ↔ (𝑆 ∈ (𝐷𝐿) ∧ ¬ 𝑆 ∈ (𝐷‘(𝐿 − 1))))
2321, 22sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∈ (𝐷𝐿) ∧ ¬ 𝑆 ∈ (𝐷‘(𝐿 − 1))))
2423simpld 494 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (𝐷𝐿))
25 stoweidlem26.4 . . . . . . . . . . . . 13 𝐷 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)})
26 oveq1 7394 . . . . . . . . . . . . . . . 16 (𝑗 = 𝐿 → (𝑗 − (1 / 3)) = (𝐿 − (1 / 3)))
2726oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑗 = 𝐿 → ((𝑗 − (1 / 3)) · 𝐸) = ((𝐿 − (1 / 3)) · 𝐸))
2827breq2d 5119 . . . . . . . . . . . . . 14 (𝑗 = 𝐿 → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
2928rabbidv 3413 . . . . . . . . . . . . 13 (𝑗 = 𝐿 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)})
30 fz1ssfz0 13584 . . . . . . . . . . . . . 14 (1...𝑁) ⊆ (0...𝑁)
31 stoweidlem26.8 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (1...𝑁))
3230, 31sselid 3944 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (0...𝑁))
33 stoweidlem26.7 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ V)
34 rabexg 5292 . . . . . . . . . . . . . 14 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)} ∈ V)
3533, 34syl 17 . . . . . . . . . . . . 13 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)} ∈ V)
3625, 29, 32, 35fvmptd3 6991 . . . . . . . . . . . 12 (𝜑 → (𝐷𝐿) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)})
3724, 36eleqtrd 2830 . . . . . . . . . . 11 (𝜑𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)})
38 nfcv 2891 . . . . . . . . . . . 12 𝑡𝑆
39 nfcv 2891 . . . . . . . . . . . 12 𝑡𝑇
40 stoweidlem26.1 . . . . . . . . . . . . . 14 𝑡𝐹
4140, 38nffv 6868 . . . . . . . . . . . . 13 𝑡(𝐹𝑆)
42 nfcv 2891 . . . . . . . . . . . . 13 𝑡
43 nfcv 2891 . . . . . . . . . . . . 13 𝑡((𝐿 − (1 / 3)) · 𝐸)
4441, 42, 43nfbr 5154 . . . . . . . . . . . 12 𝑡(𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)
45 fveq2 6858 . . . . . . . . . . . . 13 (𝑡 = 𝑆 → (𝐹𝑡) = (𝐹𝑆))
4645breq1d 5117 . . . . . . . . . . . 12 (𝑡 = 𝑆 → ((𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸) ↔ (𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
4738, 39, 44, 46elrabf 3655 . . . . . . . . . . 11 (𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝐿 − (1 / 3)) · 𝐸)} ↔ (𝑆𝑇 ∧ (𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
4837, 47sylib 218 . . . . . . . . . 10 (𝜑 → (𝑆𝑇 ∧ (𝐹𝑆) ≤ ((𝐿 − (1 / 3)) · 𝐸)))
4948simpld 494 . . . . . . . . 9 (𝜑𝑆𝑇)
5049adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 𝑆𝑇)
5120, 50ffvelcdmd 7057 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
5219, 51remulcld 11204 . . . . . 6 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
5318, 52fsumrecl 15700 . . . . 5 (𝜑 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
5453adantr 480 . . . 4 ((𝜑𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
555, 7, 9redivcli 11949 . . . . . . 7 (4 / 3) ∈ ℝ
5655a1i 11 . . . . . 6 ((𝜑𝐿 = 1) → (4 / 3) ∈ ℝ)
574, 56resubcld 11606 . . . . 5 ((𝜑𝐿 = 1) → (𝐿 − (4 / 3)) ∈ ℝ)
584recnd 11202 . . . . . . . 8 ((𝜑𝐿 = 1) → 𝐿 ∈ ℂ)
5958subid1d 11522 . . . . . . 7 ((𝜑𝐿 = 1) → (𝐿 − 0) = 𝐿)
60 3cn 12267 . . . . . . . . . 10 3 ∈ ℂ
6160, 9dividi 11915 . . . . . . . . 9 (3 / 3) = 1
62 3lt4 12355 . . . . . . . . . 10 3 < 4
63 3pos 12291 . . . . . . . . . . 11 0 < 3
647, 5, 7, 63ltdiv1ii 12112 . . . . . . . . . 10 (3 < 4 ↔ (3 / 3) < (4 / 3))
6562, 64mpbi 230 . . . . . . . . 9 (3 / 3) < (4 / 3)
6661, 65eqbrtrri 5130 . . . . . . . 8 1 < (4 / 3)
67 breq1 5110 . . . . . . . . 9 (𝐿 = 1 → (𝐿 < (4 / 3) ↔ 1 < (4 / 3)))
6867adantl 481 . . . . . . . 8 ((𝜑𝐿 = 1) → (𝐿 < (4 / 3) ↔ 1 < (4 / 3)))
6966, 68mpbiri 258 . . . . . . 7 ((𝜑𝐿 = 1) → 𝐿 < (4 / 3))
7059, 69eqbrtrd 5129 . . . . . 6 ((𝜑𝐿 = 1) → (𝐿 − 0) < (4 / 3))
714, 17, 56, 70ltsub23d 11783 . . . . 5 ((𝜑𝐿 = 1) → (𝐿 − (4 / 3)) < 0)
7213rpgt0d 12998 . . . . . 6 (𝜑 → 0 < 𝐸)
7372adantr 480 . . . . 5 ((𝜑𝐿 = 1) → 0 < 𝐸)
74 mulltgt0 45016 . . . . 5 ((((𝐿 − (4 / 3)) ∈ ℝ ∧ (𝐿 − (4 / 3)) < 0) ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝐿 − (4 / 3)) · 𝐸) < 0)
7557, 71, 15, 73, 74syl22anc 838 . . . 4 ((𝜑𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < 0)
76 0cn 11166 . . . . . . . 8 0 ∈ ℂ
77 fsumconst 15756 . . . . . . . 8 (((0...𝑁) ∈ Fin ∧ 0 ∈ ℂ) → Σ𝑖 ∈ (0...𝑁)0 = ((♯‘(0...𝑁)) · 0))
7818, 76, 77sylancl 586 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...𝑁)0 = ((♯‘(0...𝑁)) · 0))
79 hashcl 14321 . . . . . . . . 9 ((0...𝑁) ∈ Fin → (♯‘(0...𝑁)) ∈ ℕ0)
80 nn0cn 12452 . . . . . . . . 9 ((♯‘(0...𝑁)) ∈ ℕ0 → (♯‘(0...𝑁)) ∈ ℂ)
8118, 79, 803syl 18 . . . . . . . 8 (𝜑 → (♯‘(0...𝑁)) ∈ ℂ)
8281mul01d 11373 . . . . . . 7 (𝜑 → ((♯‘(0...𝑁)) · 0) = 0)
8378, 82eqtrd 2764 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...𝑁)0 = 0)
8483adantr 480 . . . . 5 ((𝜑𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)0 = 0)
85 0red 11177 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ∈ ℝ)
8613rpge0d 12999 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐸)
8786adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ 𝐸)
88 stoweidlem26.3 . . . . . . . . . . . 12 𝑡𝜑
89 nfv 1914 . . . . . . . . . . . 12 𝑡 𝑖 ∈ (0...𝑁)
9088, 89nfan 1899 . . . . . . . . . . 11 𝑡(𝜑𝑖 ∈ (0...𝑁))
91 nfv 1914 . . . . . . . . . . 11 𝑡0 ≤ ((𝑋𝑖)‘𝑆)
9290, 91nfim 1896 . . . . . . . . . 10 𝑡((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))
93 fveq2 6858 . . . . . . . . . . . 12 (𝑡 = 𝑆 → ((𝑋𝑖)‘𝑡) = ((𝑋𝑖)‘𝑆))
9493breq2d 5119 . . . . . . . . . . 11 (𝑡 = 𝑆 → (0 ≤ ((𝑋𝑖)‘𝑡) ↔ 0 ≤ ((𝑋𝑖)‘𝑆)))
9594imbi2d 340 . . . . . . . . . 10 (𝑡 = 𝑆 → (((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))))
96 stoweidlem26.14 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡𝑇) → 0 ≤ ((𝑋𝑖)‘𝑡))
97963expia 1121 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑁)) → (𝑡𝑇 → 0 ≤ ((𝑋𝑖)‘𝑡)))
9897com12 32 . . . . . . . . . 10 (𝑡𝑇 → ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑡)))
9938, 92, 95, 98vtoclgaf 3542 . . . . . . . . 9 (𝑆𝑇 → ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆)))
10050, 99mpcom 38 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))
10119, 51, 87, 100mulge0d 11755 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → 0 ≤ (𝐸 · ((𝑋𝑖)‘𝑆)))
10218, 85, 52, 101fsumle 15765 . . . . . 6 (𝜑 → Σ𝑖 ∈ (0...𝑁)0 ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
103102adantr 480 . . . . 5 ((𝜑𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)0 ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
10484, 103eqbrtrrd 5131 . . . 4 ((𝜑𝐿 = 1) → 0 ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
10516, 17, 54, 75, 104ltletrd 11334 . . 3 ((𝜑𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
106 elfzelz 13485 . . . . . . . . 9 (𝐿 ∈ (1...𝑁) → 𝐿 ∈ ℤ)
107 zre 12533 . . . . . . . . 9 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
10831, 106, 1073syl 18 . . . . . . . 8 (𝜑𝐿 ∈ ℝ)
1095a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℝ)
1107a1i 11 . . . . . . . . 9 (𝜑 → 3 ∈ ℝ)
1119a1i 11 . . . . . . . . 9 (𝜑 → 3 ≠ 0)
112109, 110, 111redivcld 12010 . . . . . . . 8 (𝜑 → (4 / 3) ∈ ℝ)
113108, 112resubcld 11606 . . . . . . 7 (𝜑 → (𝐿 − (4 / 3)) ∈ ℝ)
114113, 14remulcld 11204 . . . . . 6 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ)
115114adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ)
1161a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
117 stoweidlem26.6 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ)
11814, 117nndivred 12240 . . . . . . . . 9 (𝜑 → (𝐸 / 𝑁) ∈ ℝ)
119116, 118resubcld 11606 . . . . . . . 8 (𝜑 → (1 − (𝐸 / 𝑁)) ∈ ℝ)
120108, 116resubcld 11606 . . . . . . . 8 (𝜑 → (𝐿 − 1) ∈ ℝ)
121119, 120remulcld 11204 . . . . . . 7 (𝜑 → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) ∈ ℝ)
12214, 121remulcld 11204 . . . . . 6 (𝜑 → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) ∈ ℝ)
123122adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) ∈ ℝ)
124 fzfid 13938 . . . . . . . 8 (𝜑 → (0...(𝐿 − 2)) ∈ Fin)
12531elfzelzd 13486 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℤ)
126 2z 12565 . . . . . . . . . . . . . . 15 2 ∈ ℤ
127126a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℤ)
128125, 127zsubcld 12643 . . . . . . . . . . . . 13 (𝜑 → (𝐿 − 2) ∈ ℤ)
129117nnzd 12556 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
130125zred 12638 . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ ℝ)
131 2re 12260 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
132131a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ)
133130, 132resubcld 11606 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 − 2) ∈ ℝ)
134117nnred 12201 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
135 0le2 12288 . . . . . . . . . . . . . . . 16 0 ≤ 2
136 0red 11177 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
137136, 132, 130lesub2d 11786 . . . . . . . . . . . . . . . 16 (𝜑 → (0 ≤ 2 ↔ (𝐿 − 2) ≤ (𝐿 − 0)))
138135, 137mpbii 233 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 − 2) ≤ (𝐿 − 0))
139125zcnd 12639 . . . . . . . . . . . . . . . 16 (𝜑𝐿 ∈ ℂ)
140139subid1d 11522 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 − 0) = 𝐿)
141138, 140breqtrd 5133 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 − 2) ≤ 𝐿)
142 elfzle2 13489 . . . . . . . . . . . . . . 15 (𝐿 ∈ (1...𝑁) → 𝐿𝑁)
14331, 142syl 17 . . . . . . . . . . . . . 14 (𝜑𝐿𝑁)
144133, 130, 134, 141, 143letrd 11331 . . . . . . . . . . . . 13 (𝜑 → (𝐿 − 2) ≤ 𝑁)
145128, 129, 1443jca 1128 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 2) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐿 − 2) ≤ 𝑁))
146 eluz2 12799 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘(𝐿 − 2)) ↔ ((𝐿 − 2) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐿 − 2) ≤ 𝑁))
147145, 146sylibr 234 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘(𝐿 − 2)))
148 fzss2 13525 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘(𝐿 − 2)) → (0...(𝐿 − 2)) ⊆ (0...𝑁))
149147, 148syl 17 . . . . . . . . . 10 (𝜑 → (0...(𝐿 − 2)) ⊆ (0...𝑁))
150149sselda 3946 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ∈ (0...𝑁))
151150, 51syldan 591 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
152124, 151fsumrecl 15700 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ∈ ℝ)
15314, 152remulcld 11204 . . . . . 6 (𝜑 → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ)
154153adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ)
15514, 120remulcld 11204 . . . . . . . . 9 (𝜑 → (𝐸 · (𝐿 − 1)) ∈ ℝ)
15614, 14remulcld 11204 . . . . . . . . 9 (𝜑 → (𝐸 · 𝐸) ∈ ℝ)
157155, 156resubcld 11606 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)) ∈ ℝ)
158120, 117nndivred 12240 . . . . . . . . . 10 (𝜑 → ((𝐿 − 1) / 𝑁) ∈ ℝ)
159156, 158remulcld 11204 . . . . . . . . 9 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) ∈ ℝ)
160155, 159resubcld 11606 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))) ∈ ℝ)
161120, 14resubcld 11606 . . . . . . . . . 10 (𝜑 → ((𝐿 − 1) − 𝐸) ∈ ℝ)
162116, 14readdcld 11203 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐸) ∈ ℝ)
1631, 7, 9redivcli 11949 . . . . . . . . . . . . . . 15 (1 / 3) ∈ ℝ
164163a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 / 3) ∈ ℝ)
165 stoweidlem26.12 . . . . . . . . . . . . . 14 (𝜑𝐸 < (1 / 3))
16614, 164, 116, 165ltadd2dd 11333 . . . . . . . . . . . . 13 (𝜑 → (1 + 𝐸) < (1 + (1 / 3)))
167 ax-1cn 11126 . . . . . . . . . . . . . . 15 1 ∈ ℂ
16860, 167, 60, 9divdiri 11939 . . . . . . . . . . . . . 14 ((3 + 1) / 3) = ((3 / 3) + (1 / 3))
169 3p1e4 12326 . . . . . . . . . . . . . . 15 (3 + 1) = 4
170169oveq1i 7397 . . . . . . . . . . . . . 14 ((3 + 1) / 3) = (4 / 3)
17161oveq1i 7397 . . . . . . . . . . . . . 14 ((3 / 3) + (1 / 3)) = (1 + (1 / 3))
172168, 170, 1713eqtr3ri 2761 . . . . . . . . . . . . 13 (1 + (1 / 3)) = (4 / 3)
173166, 172breqtrdi 5148 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐸) < (4 / 3))
174162, 112, 108, 173ltsub2dd 11791 . . . . . . . . . . 11 (𝜑 → (𝐿 − (4 / 3)) < (𝐿 − (1 + 𝐸)))
175167a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
17613rpcnd 12997 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℂ)
177139, 175, 176subsub4d 11564 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) − 𝐸) = (𝐿 − (1 + 𝐸)))
178174, 177breqtrrd 5135 . . . . . . . . . 10 (𝜑 → (𝐿 − (4 / 3)) < ((𝐿 − 1) − 𝐸))
179113, 161, 13, 178ltmul1dd 13050 . . . . . . . . 9 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < (((𝐿 − 1) − 𝐸) · 𝐸))
180139, 175subcld 11533 . . . . . . . . . . . 12 (𝜑 → (𝐿 − 1) ∈ ℂ)
181180, 176subcld 11533 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) − 𝐸) ∈ ℂ)
182176, 181mulcomd 11195 . . . . . . . . . 10 (𝜑 → (𝐸 · ((𝐿 − 1) − 𝐸)) = (((𝐿 − 1) − 𝐸) · 𝐸))
183176, 180, 176subdid 11634 . . . . . . . . . 10 (𝜑 → (𝐸 · ((𝐿 − 1) − 𝐸)) = ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)))
184182, 183eqtr3d 2766 . . . . . . . . 9 (𝜑 → (((𝐿 − 1) − 𝐸) · 𝐸) = ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)))
185179, 184breqtrd 5133 . . . . . . . 8 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)))
186 1zzd 12564 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
187 elfz 13474 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 ∈ (1...𝑁) ↔ (1 ≤ 𝐿𝐿𝑁)))
188125, 186, 129, 187syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐿 ∈ (1...𝑁) ↔ (1 ≤ 𝐿𝐿𝑁)))
18931, 188mpbid 232 . . . . . . . . . . . . . . 15 (𝜑 → (1 ≤ 𝐿𝐿𝑁))
190189simprd 495 . . . . . . . . . . . . . 14 (𝜑𝐿𝑁)
191 zlem1lt 12585 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
192125, 129, 191syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
193190, 192mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝐿 − 1) < 𝑁)
194117nngt0d 12235 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
195 ltdiv1 12047 . . . . . . . . . . . . . 14 (((𝐿 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝐿 − 1) < 𝑁 ↔ ((𝐿 − 1) / 𝑁) < (𝑁 / 𝑁)))
196120, 134, 134, 194, 195syl112anc 1376 . . . . . . . . . . . . 13 (𝜑 → ((𝐿 − 1) < 𝑁 ↔ ((𝐿 − 1) / 𝑁) < (𝑁 / 𝑁)))
197193, 196mpbid 232 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 1) / 𝑁) < (𝑁 / 𝑁))
198117nncnd 12202 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
199117nnne0d 12236 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
200198, 199dividd 11956 . . . . . . . . . . . 12 (𝜑 → (𝑁 / 𝑁) = 1)
201197, 200breqtrd 5133 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) / 𝑁) < 1)
20214, 14, 72, 72mulgt0d 11329 . . . . . . . . . . . 12 (𝜑 → 0 < (𝐸 · 𝐸))
203 ltmul2 12033 . . . . . . . . . . . 12 ((((𝐿 − 1) / 𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝐸 · 𝐸) ∈ ℝ ∧ 0 < (𝐸 · 𝐸))) → (((𝐿 − 1) / 𝑁) < 1 ↔ ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < ((𝐸 · 𝐸) · 1)))
204158, 116, 156, 202, 203syl112anc 1376 . . . . . . . . . . 11 (𝜑 → (((𝐿 − 1) / 𝑁) < 1 ↔ ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < ((𝐸 · 𝐸) · 1)))
205201, 204mpbid 232 . . . . . . . . . 10 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < ((𝐸 · 𝐸) · 1))
206176, 176mulcld 11194 . . . . . . . . . . 11 (𝜑 → (𝐸 · 𝐸) ∈ ℂ)
207206mulridd 11191 . . . . . . . . . 10 (𝜑 → ((𝐸 · 𝐸) · 1) = (𝐸 · 𝐸))
208205, 207breqtrd 5133 . . . . . . . . 9 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) < (𝐸 · 𝐸))
209159, 156, 155, 208ltsub2dd 11791 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − (𝐸 · 𝐸)) < ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
210114, 157, 160, 185, 209lttrd 11335 . . . . . . 7 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
211176, 198, 199divcld 11958 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑁) ∈ ℂ)
212175, 211, 180subdird 11635 . . . . . . . . . 10 (𝜑 → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) = ((1 · (𝐿 − 1)) − ((𝐸 / 𝑁) · (𝐿 − 1))))
213180mullidd 11192 . . . . . . . . . . 11 (𝜑 → (1 · (𝐿 − 1)) = (𝐿 − 1))
214213oveq1d 7402 . . . . . . . . . 10 (𝜑 → ((1 · (𝐿 − 1)) − ((𝐸 / 𝑁) · (𝐿 − 1))) = ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1))))
215212, 214eqtrd 2764 . . . . . . . . 9 (𝜑 → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) = ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1))))
216215oveq2d 7403 . . . . . . . 8 (𝜑 → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) = (𝐸 · ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1)))))
217211, 180mulcld 11194 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑁) · (𝐿 − 1)) ∈ ℂ)
218176, 180, 217subdid 11634 . . . . . . . 8 (𝜑 → (𝐸 · ((𝐿 − 1) − ((𝐸 / 𝑁) · (𝐿 − 1)))) = ((𝐸 · (𝐿 − 1)) − (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1)))))
219176, 198, 180, 199div32d 11981 . . . . . . . . . . 11 (𝜑 → ((𝐸 / 𝑁) · (𝐿 − 1)) = (𝐸 · ((𝐿 − 1) / 𝑁)))
220219oveq2d 7403 . . . . . . . . . 10 (𝜑 → (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1))) = (𝐸 · (𝐸 · ((𝐿 − 1) / 𝑁))))
221180, 198, 199divcld 11958 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 1) / 𝑁) ∈ ℂ)
222176, 176, 221mulassd 11197 . . . . . . . . . 10 (𝜑 → ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)) = (𝐸 · (𝐸 · ((𝐿 − 1) / 𝑁))))
223220, 222eqtr4d 2767 . . . . . . . . 9 (𝜑 → (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1))) = ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁)))
224223oveq2d 7403 . . . . . . . 8 (𝜑 → ((𝐸 · (𝐿 − 1)) − (𝐸 · ((𝐸 / 𝑁) · (𝐿 − 1)))) = ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
225216, 218, 2243eqtrd 2768 . . . . . . 7 (𝜑 → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) = ((𝐸 · (𝐿 − 1)) − ((𝐸 · 𝐸) · ((𝐿 − 1) / 𝑁))))
226210, 225breqtrrd 5135 . . . . . 6 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))))
227226adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))))
228175, 211subcld 11533 . . . . . . . . . 10 (𝜑 → (1 − (𝐸 / 𝑁)) ∈ ℂ)
229 fsumconst 15756 . . . . . . . . . 10 (((0...(𝐿 − 2)) ∈ Fin ∧ (1 − (𝐸 / 𝑁)) ∈ ℂ) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))))
230124, 228, 229syl2anc 584 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))))
231230adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))))
232 0zd 12541 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ∈ ℤ)
23331adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ (1...𝑁))
234233elfzelzd 13486 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ ℤ)
235126a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → 2 ∈ ℤ)
236234, 235zsubcld 12643 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ∈ ℤ)
237 elnnuz 12837 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
238117, 237sylib 218 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ (ℤ‘1))
239 elfzp12 13564 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘1) → (𝐿 ∈ (1...𝑁) ↔ (𝐿 = 1 ∨ 𝐿 ∈ ((1 + 1)...𝑁))))
240238, 239syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐿 ∈ (1...𝑁) ↔ (𝐿 = 1 ∨ 𝐿 ∈ ((1 + 1)...𝑁))))
24131, 240mpbid 232 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 = 1 ∨ 𝐿 ∈ ((1 + 1)...𝑁)))
242241orcanai 1004 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ ((1 + 1)...𝑁))
243 1p1e2 12306 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
244243a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ¬ 𝐿 = 1) → (1 + 1) = 2)
245244oveq1d 7402 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ¬ 𝐿 = 1) → ((1 + 1)...𝑁) = (2...𝑁))
246242, 245eleqtrd 2830 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ (2...𝑁))
247 elfzle1 13488 . . . . . . . . . . . . . . 15 (𝐿 ∈ (2...𝑁) → 2 ≤ 𝐿)
248246, 247syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → 2 ≤ 𝐿)
249108adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 𝐿 ∈ ℝ)
250131a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ 𝐿 = 1) → 2 ∈ ℝ)
251249, 250subge0d 11768 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐿 = 1) → (0 ≤ (𝐿 − 2) ↔ 2 ≤ 𝐿))
252248, 251mpbird 257 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ≤ (𝐿 − 2))
253232, 236, 2523jca 1128 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐿 = 1) → (0 ∈ ℤ ∧ (𝐿 − 2) ∈ ℤ ∧ 0 ≤ (𝐿 − 2)))
254 eluz2 12799 . . . . . . . . . . . 12 ((𝐿 − 2) ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ (𝐿 − 2) ∈ ℤ ∧ 0 ≤ (𝐿 − 2)))
255253, 254sylibr 234 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ∈ (ℤ‘0))
256 hashfz 14392 . . . . . . . . . . 11 ((𝐿 − 2) ∈ (ℤ‘0) → (♯‘(0...(𝐿 − 2))) = (((𝐿 − 2) − 0) + 1))
257255, 256syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐿 = 1) → (♯‘(0...(𝐿 − 2))) = (((𝐿 − 2) − 0) + 1))
258 2cn 12261 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
259258a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℂ)
260139, 259subcld 11533 . . . . . . . . . . . . . 14 (𝜑 → (𝐿 − 2) ∈ ℂ)
261260subid1d 11522 . . . . . . . . . . . . 13 (𝜑 → ((𝐿 − 2) − 0) = (𝐿 − 2))
262261oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → (((𝐿 − 2) − 0) + 1) = ((𝐿 − 2) + 1))
263139, 259, 175subadd23d 11555 . . . . . . . . . . . 12 (𝜑 → ((𝐿 − 2) + 1) = (𝐿 + (1 − 2)))
264258, 167negsubdi2i 11508 . . . . . . . . . . . . . . . 16 -(2 − 1) = (1 − 2)
265 2m1e1 12307 . . . . . . . . . . . . . . . . 17 (2 − 1) = 1
266265negeqi 11414 . . . . . . . . . . . . . . . 16 -(2 − 1) = -1
267264, 266eqtr3i 2754 . . . . . . . . . . . . . . 15 (1 − 2) = -1
268267a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (1 − 2) = -1)
269268oveq2d 7403 . . . . . . . . . . . . 13 (𝜑 → (𝐿 + (1 − 2)) = (𝐿 + -1))
270139, 175negsubd 11539 . . . . . . . . . . . . 13 (𝜑 → (𝐿 + -1) = (𝐿 − 1))
271269, 270eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (𝐿 + (1 − 2)) = (𝐿 − 1))
272262, 263, 2713eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (((𝐿 − 2) − 0) + 1) = (𝐿 − 1))
273272adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐿 = 1) → (((𝐿 − 2) − 0) + 1) = (𝐿 − 1))
274257, 273eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐿 = 1) → (♯‘(0...(𝐿 − 2))) = (𝐿 − 1))
275274oveq1d 7402 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → ((♯‘(0...(𝐿 − 2))) · (1 − (𝐸 / 𝑁))) = ((𝐿 − 1) · (1 − (𝐸 / 𝑁))))
276180, 228mulcomd 11195 . . . . . . . . 9 (𝜑 → ((𝐿 − 1) · (1 − (𝐸 / 𝑁))) = ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)))
277276adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 1) · (1 − (𝐸 / 𝑁))) = ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)))
278231, 275, 2773eqtrd 2768 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) = ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)))
279 fzfid 13938 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...(𝐿 − 2)) ∈ Fin)
280 fzn0 13499 . . . . . . . . 9 ((0...(𝐿 − 2)) ≠ ∅ ↔ (𝐿 − 2) ∈ (ℤ‘0))
281255, 280sylibr 234 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...(𝐿 − 2)) ≠ ∅)
282119ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (1 − (𝐸 / 𝑁)) ∈ ℝ)
283 simpll 766 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → 𝜑)
284150adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ∈ (0...𝑁))
285283, 284, 51syl2anc 584 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
28649adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑆𝑇)
287 elfzelz 13485 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (0...(𝐿 − 2)) → 𝑖 ∈ ℤ)
288287zred 12638 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0...(𝐿 − 2)) → 𝑖 ∈ ℝ)
289288adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ∈ ℝ)
290163a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (1 / 3) ∈ ℝ)
291289, 290readdcld 11203 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝑖 + (1 / 3)) ∈ ℝ)
29214adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝐸 ∈ ℝ)
293291, 292remulcld 11204 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) · 𝐸) ∈ ℝ)
294108adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝐿 ∈ ℝ)
295131a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 2 ∈ ℝ)
296294, 295resubcld 11606 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) ∈ ℝ)
297296, 290readdcld 11203 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝐿 − 2) + (1 / 3)) ∈ ℝ)
298297, 292remulcld 11204 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (((𝐿 − 2) + (1 / 3)) · 𝐸) ∈ ℝ)
299 stoweidlem26.10 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑇⟶ℝ)
300299, 49jca 511 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹:𝑇⟶ℝ ∧ 𝑆𝑇))
301300adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐹:𝑇⟶ℝ ∧ 𝑆𝑇))
302 ffvelcdm 7053 . . . . . . . . . . . . . 14 ((𝐹:𝑇⟶ℝ ∧ 𝑆𝑇) → (𝐹𝑆) ∈ ℝ)
303301, 302syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐹𝑆) ∈ ℝ)
304 elfzle2 13489 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0...(𝐿 − 2)) → 𝑖 ≤ (𝐿 − 2))
305304adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑖 ≤ (𝐿 − 2))
306289, 296, 290, 305leadd1dd 11792 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝑖 + (1 / 3)) ≤ ((𝐿 − 2) + (1 / 3)))
30714, 72jca 511 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
308307adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
309 lemul1 12034 . . . . . . . . . . . . . . 15 (((𝑖 + (1 / 3)) ∈ ℝ ∧ ((𝐿 − 2) + (1 / 3)) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → ((𝑖 + (1 / 3)) ≤ ((𝐿 − 2) + (1 / 3)) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (((𝐿 − 2) + (1 / 3)) · 𝐸)))
310291, 297, 308, 309syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) ≤ ((𝐿 − 2) + (1 / 3)) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (((𝐿 − 2) + (1 / 3)) · 𝐸)))
311306, 310mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) · 𝐸) ≤ (((𝐿 − 2) + (1 / 3)) · 𝐸))
312108, 132resubcld 11606 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐿 − 2) ∈ ℝ)
313312, 164readdcld 11203 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐿 − 2) + (1 / 3)) ∈ ℝ)
314313, 14remulcld 11204 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) ∈ ℝ)
315299, 49ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹𝑆) ∈ ℝ)
316120, 164resubcld 11606 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 − 1) − (1 / 3)) ∈ ℝ)
317316, 14remulcld 11204 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 − 1) − (1 / 3)) · 𝐸) ∈ ℝ)
318 addrid 11354 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ ℂ → (1 + 0) = 1)
319318eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℂ → 1 = (1 + 0))
320167, 319mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 1 = (1 + 0))
321175subidd 11521 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (1 − 1) = 0)
322321eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 0 = (1 − 1))
323322oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + 0) = (1 + (1 − 1)))
324 addsubass 11431 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((1 + 1) − 1) = (1 + (1 − 1)))
325324eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → (1 + (1 − 1)) = ((1 + 1) − 1))
326175, 175, 175, 325syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + (1 − 1)) = ((1 + 1) − 1))
327320, 323, 3263eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → 1 = ((1 + 1) − 1))
328327oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 − 1) = (𝐿 − ((1 + 1) − 1)))
329243a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1 + 1) = 2)
330329oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((1 + 1) − 1) = (2 − 1))
331330oveq2d 7403 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 − ((1 + 1) − 1)) = (𝐿 − (2 − 1)))
332139, 259, 175subsubd 11561 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐿 − (2 − 1)) = ((𝐿 − 2) + 1))
333328, 331, 3323eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐿 − 1) = ((𝐿 − 2) + 1))
334333oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 − 1) − (2 / 3)) = (((𝐿 − 2) + 1) − (2 / 3)))
335258, 60, 9divcli 11924 . . . . . . . . . . . . . . . . . . . . 21 (2 / 3) ∈ ℂ
336335a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (2 / 3) ∈ ℂ)
337260, 175, 336addsubassd 11553 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐿 − 2) + 1) − (2 / 3)) = ((𝐿 − 2) + (1 − (2 / 3))))
338167, 60, 9divcli 11924 . . . . . . . . . . . . . . . . . . . . . 22 (1 / 3) ∈ ℂ
339 df-3 12250 . . . . . . . . . . . . . . . . . . . . . . . 24 3 = (2 + 1)
340339oveq1i 7397 . . . . . . . . . . . . . . . . . . . . . . 23 (3 / 3) = ((2 + 1) / 3)
341258, 167, 60, 9divdiri 11939 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 + 1) / 3) = ((2 / 3) + (1 / 3))
342340, 61, 3413eqtr3ri 2761 . . . . . . . . . . . . . . . . . . . . . 22 ((2 / 3) + (1 / 3)) = 1
343167, 335, 338, 342subaddrii 11511 . . . . . . . . . . . . . . . . . . . . 21 (1 − (2 / 3)) = (1 / 3)
344343a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 − (2 / 3)) = (1 / 3))
345344oveq2d 7403 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐿 − 2) + (1 − (2 / 3))) = ((𝐿 − 2) + (1 / 3)))
346334, 337, 3453eqtrd 2768 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 − 1) − (2 / 3)) = ((𝐿 − 2) + (1 / 3)))
347131, 7, 9redivcli 11949 . . . . . . . . . . . . . . . . . . . 20 (2 / 3) ∈ ℝ
348347a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2 / 3) ∈ ℝ)
349 1lt2 12352 . . . . . . . . . . . . . . . . . . . 20 1 < 2
3507, 63pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . 22 (3 ∈ ℝ ∧ 0 < 3)
3511, 131, 3503pm3.2i 1340 . . . . . . . . . . . . . . . . . . . . 21 (1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3))
352 ltdiv1 12047 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (1 < 2 ↔ (1 / 3) < (2 / 3)))
353351, 352mp1i 13 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1 < 2 ↔ (1 / 3) < (2 / 3)))
354349, 353mpbii 233 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1 / 3) < (2 / 3))
355164, 348, 120, 354ltsub2dd 11791 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐿 − 1) − (2 / 3)) < ((𝐿 − 1) − (1 / 3)))
356346, 355eqbrtrrd 5131 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐿 − 2) + (1 / 3)) < ((𝐿 − 1) − (1 / 3)))
357313, 316, 13, 356ltmul1dd 13050 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) < (((𝐿 − 1) − (1 / 3)) · 𝐸))
35823simprd 495 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ¬ 𝑆 ∈ (𝐷‘(𝐿 − 1)))
359 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑗 = (𝐿 − 1) → (𝑗 − (1 / 3)) = ((𝐿 − 1) − (1 / 3)))
360359oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑗 = (𝐿 − 1) → ((𝑗 − (1 / 3)) · 𝐸) = (((𝐿 − 1) − (1 / 3)) · 𝐸))
361360breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑗 = (𝐿 − 1) → ((𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸) ↔ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
362361rabbidv 3413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 = (𝐿 − 1) → {𝑡𝑇 ∣ (𝐹𝑡) ≤ ((𝑗 − (1 / 3)) · 𝐸)} = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)})
363129peano2zd 12641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝑁 + 1) ∈ ℤ)
364189simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → 1 ≤ 𝐿)
365134, 116readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝑁 + 1) ∈ ℝ)
366134lep1d 12114 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑁 ≤ (𝑁 + 1))
367108, 134, 365, 190, 366letrd 11331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐿 ≤ (𝑁 + 1))
368186, 363, 125, 364, 367elfzd 13476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐿 ∈ (1...(𝑁 + 1)))
369139, 175npcand 11537 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝐿 − 1) + 1) = 𝐿)
370 0p1e1 12303 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (0 + 1) = 1
371370a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (0 + 1) = 1)
372371oveq1d 7402 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1)))
373368, 369, 3723eltr4d 2843 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐿 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1)))
374 0zd 12541 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → 0 ∈ ℤ)
375125, 186zsubcld 12643 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐿 − 1) ∈ ℤ)
376 fzaddel 13519 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐿 − 1) ∈ ℤ ∧ 1 ∈ ℤ)) → ((𝐿 − 1) ∈ (0...𝑁) ↔ ((𝐿 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
377374, 129, 375, 186, 376syl22anc 838 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐿 − 1) ∈ (0...𝑁) ↔ ((𝐿 − 1) + 1) ∈ ((0 + 1)...(𝑁 + 1))))
378373, 377mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐿 − 1) ∈ (0...𝑁))
379 rabexg 5292 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑇 ∈ V → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)} ∈ V)
38033, 379syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)} ∈ V)
38125, 362, 378, 380fvmptd3 6991 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝐷‘(𝐿 − 1)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)})
382358, 381neleqtrd 2850 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ¬ 𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)})
383 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑡(((𝐿 − 1) − (1 / 3)) · 𝐸)
38441, 42, 383nfbr 5154 . . . . . . . . . . . . . . . . . . . . . . 23 𝑡(𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)
38545breq1d 5117 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑆 → ((𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ↔ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
38638, 39, 384, 385elrabf 3655 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)} ↔ (𝑆𝑇 ∧ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
387382, 386sylnib 328 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ (𝑆𝑇 ∧ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
388 ianor 983 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑆𝑇 ∧ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)) ↔ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
389387, 388sylib 218 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
390 olc 868 . . . . . . . . . . . . . . . . . . . . 21 (𝑆𝑇 → (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇))
391390anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((𝑆𝑇 ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))) → ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))))
39249, 389, 391syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))))
393 orcom 870 . . . . . . . . . . . . . . . . . . . 20 ((¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)) ↔ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇))
394393anbi2i 623 . . . . . . . . . . . . . . . . . . 19 (((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ 𝑆𝑇 ∨ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))) ↔ ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇)))
395392, 394sylib 218 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇)))
396 pm4.43 1024 . . . . . . . . . . . . . . . . . 18 (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ↔ ((¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ 𝑆𝑇) ∧ (¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸) ∨ ¬ 𝑆𝑇)))
397395, 396sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸))
398317, 315ltnled 11321 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((𝐿 − 1) − (1 / 3)) · 𝐸) < (𝐹𝑆) ↔ ¬ (𝐹𝑆) ≤ (((𝐿 − 1) − (1 / 3)) · 𝐸)))
399397, 398mpbird 257 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐿 − 1) − (1 / 3)) · 𝐸) < (𝐹𝑆))
400314, 317, 315, 357, 399lttrd 11335 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) < (𝐹𝑆))
401314, 315, 400ltled 11322 . . . . . . . . . . . . . 14 (𝜑 → (((𝐿 − 2) + (1 / 3)) · 𝐸) ≤ (𝐹𝑆))
402401adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (((𝐿 − 2) + (1 / 3)) · 𝐸) ≤ (𝐹𝑆))
403293, 298, 303, 311, 402letrd 11331 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆))
404 nfcv 2891 . . . . . . . . . . . . . 14 𝑡((𝑖 + (1 / 3)) · 𝐸)
405404, 42, 41nfbr 5154 . . . . . . . . . . . . 13 𝑡((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆)
40645breq2d 5119 . . . . . . . . . . . . 13 (𝑡 = 𝑆 → (((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆)))
40738, 39, 405, 406elrabf 3655 . . . . . . . . . . . 12 (𝑆 ∈ {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ↔ (𝑆𝑇 ∧ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑆)))
408286, 403, 407sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑆 ∈ {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
409 stoweidlem26.5 . . . . . . . . . . . 12 𝐵 = (𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
410 oveq1 7394 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝑗 + (1 / 3)) = (𝑖 + (1 / 3)))
411410oveq1d 7402 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝑗 + (1 / 3)) · 𝐸) = ((𝑖 + (1 / 3)) · 𝐸))
412411breq1d 5117 . . . . . . . . . . . . 13 (𝑗 = 𝑖 → (((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡) ↔ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)))
413412rabbidv 3413 . . . . . . . . . . . 12 (𝑗 = 𝑖 → {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} = {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
414 rabexg 5292 . . . . . . . . . . . . . 14 (𝑇 ∈ V → {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
41533, 414syl 17 . . . . . . . . . . . . 13 (𝜑 → {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
416415adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)} ∈ V)
417409, 413, 150, 416fvmptd3 6991 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐵𝑖) = {𝑡𝑇 ∣ ((𝑖 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
418408, 417eleqtrrd 2831 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → 𝑆 ∈ (𝐵𝑖))
4191453ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → ((𝐿 − 2) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐿 − 2) ≤ 𝑁))
420419, 146sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑁 ∈ (ℤ‘(𝐿 − 2)))
421420, 148syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → (0...(𝐿 − 2)) ⊆ (0...𝑁))
422 simp2 1137 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑖 ∈ (0...(𝐿 − 2)))
423421, 422sseldd 3947 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑖 ∈ (0...𝑁))
424 elex 3468 . . . . . . . . . . . . 13 (𝑆 ∈ (𝐵𝑖) → 𝑆 ∈ V)
4254243ad2ant3 1135 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → 𝑆 ∈ V)
426 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑡(0...𝑁)
427 nfrab1 3426 . . . . . . . . . . . . . . . . . . 19 𝑡{𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)}
428426, 427nfmpt 5205 . . . . . . . . . . . . . . . . . 18 𝑡(𝑗 ∈ (0...𝑁) ↦ {𝑡𝑇 ∣ ((𝑗 + (1 / 3)) · 𝐸) ≤ (𝐹𝑡)})
429409, 428nfcxfr 2889 . . . . . . . . . . . . . . . . 17 𝑡𝐵
430 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑡𝑖
431429, 430nffv 6868 . . . . . . . . . . . . . . . 16 𝑡(𝐵𝑖)
432431nfel2 2910 . . . . . . . . . . . . . . 15 𝑡 𝑆 ∈ (𝐵𝑖)
43388, 89, 432nf3an 1901 . . . . . . . . . . . . . 14 𝑡(𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖))
434 nfv 1914 . . . . . . . . . . . . . 14 𝑡(1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆)
435433, 434nfim 1896 . . . . . . . . . . . . 13 𝑡((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
436 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑡 = 𝑆 → (𝑡 ∈ (𝐵𝑖) ↔ 𝑆 ∈ (𝐵𝑖)))
4374363anbi3d 1444 . . . . . . . . . . . . . 14 (𝑡 = 𝑆 → ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) ↔ (𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖))))
43893breq2d 5119 . . . . . . . . . . . . . 14 (𝑡 = 𝑆 → ((1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡) ↔ (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆)))
439437, 438imbi12d 344 . . . . . . . . . . . . 13 (𝑡 = 𝑆 → (((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡)) ↔ ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))))
440 stoweidlem26.15 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑡 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑡))
441435, 439, 440vtoclg1f 3536 . . . . . . . . . . . 12 (𝑆 ∈ V → ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆)))
442425, 441mpcom 38 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...𝑁) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
443423, 442syld3an2 1413 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐿 − 2)) ∧ 𝑆 ∈ (𝐵𝑖)) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
444418, 443mpd3an3 1464 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
445444adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (1 − (𝐸 / 𝑁)) < ((𝑋𝑖)‘𝑆))
446279, 281, 282, 285, 445fsumlt 15766 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(1 − (𝐸 / 𝑁)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))
447278, 446eqbrtrrd 5131 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))
448121adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → ((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) ∈ ℝ)
449152adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ∈ ℝ)
450307adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
451 ltmul2 12033 . . . . . . 7 ((((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) ∈ ℝ ∧ Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ↔ (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))))
452448, 449, 450, 451syl3anc 1373 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (((1 − (𝐸 / 𝑁)) · (𝐿 − 1)) < Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆) ↔ (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆))))
453447, 452mpbid 232 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · ((1 − (𝐸 / 𝑁)) · (𝐿 − 1))) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)))
454115, 123, 154, 227, 453lttrd 11335 . . . 4 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)))
455150, 52syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
456455adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
457456recnd 11202 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...(𝐿 − 2))) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
458279, 457fsumcl 15699 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
459458addridd 11374 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + 0) = Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)))
460 0red 11177 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ∈ ℝ)
461 fzfid 13938 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 1)...𝑁) ∈ Fin)
46214adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝐸 ∈ ℝ)
463 0zd 12541 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ∈ ℤ)
464129adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑁 ∈ ℤ)
465 elfzelz 13485 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝐿 − 1)...𝑁) → 𝑖 ∈ ℤ)
466465adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ ℤ)
467 0red 11177 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ∈ ℝ)
468120adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐿 − 1) ∈ ℝ)
469465zred 12638 . . . . . . . . . . . . . 14 (𝑖 ∈ ((𝐿 − 1)...𝑁) → 𝑖 ∈ ℝ)
470469adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ ℝ)
471 1m1e0 12258 . . . . . . . . . . . . . . 15 (1 − 1) = 0
472116, 108, 116, 364lesub1dd 11794 . . . . . . . . . . . . . . 15 (𝜑 → (1 − 1) ≤ (𝐿 − 1))
473471, 472eqbrtrrid 5143 . . . . . . . . . . . . . 14 (𝜑 → 0 ≤ (𝐿 − 1))
474473adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ (𝐿 − 1))
475 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ ((𝐿 − 1)...𝑁))
476375adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐿 − 1) ∈ ℤ)
477 elfz 13474 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ ℤ ∧ (𝐿 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑖 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑖𝑖𝑁)))
478466, 476, 464, 477syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝑖 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑖𝑖𝑁)))
479475, 478mpbid 232 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → ((𝐿 − 1) ≤ 𝑖𝑖𝑁))
480479simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐿 − 1) ≤ 𝑖)
481467, 468, 470, 474, 480letrd 11331 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ 𝑖)
482 elfzle2 13489 . . . . . . . . . . . . 13 (𝑖 ∈ ((𝐿 − 1)...𝑁) → 𝑖𝑁)
483482adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖𝑁)
484463, 464, 466, 481, 483elfzd 13476 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝑖 ∈ (0...𝑁))
485484, 51syldan 591 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → ((𝑋𝑖)‘𝑆) ∈ ℝ)
486462, 485remulcld 11204 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
487486adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
488461, 487fsumrecl 15700 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
489279, 456fsumrecl 15700 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ)
490 fzfid 13938 . . . . . . . . 9 (𝜑 → ((𝐿 − 1)...𝑁) ∈ Fin)
491176adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 𝐸 ∈ ℂ)
492491mul01d 11373 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · 0) = 0)
493484, 100syldan 591 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ ((𝑋𝑖)‘𝑆))
494307adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 ∈ ℝ ∧ 0 < 𝐸))
495 lemul2 12035 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ((𝑋𝑖)‘𝑆) ∈ ℝ ∧ (𝐸 ∈ ℝ ∧ 0 < 𝐸)) → (0 ≤ ((𝑋𝑖)‘𝑆) ↔ (𝐸 · 0) ≤ (𝐸 · ((𝑋𝑖)‘𝑆))))
496467, 485, 494, 495syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (0 ≤ ((𝑋𝑖)‘𝑆) ↔ (𝐸 · 0) ≤ (𝐸 · ((𝑋𝑖)‘𝑆))))
497493, 496mpbid 232 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → (𝐸 · 0) ≤ (𝐸 · ((𝑋𝑖)‘𝑆)))
498492, 497eqbrtrrd 5131 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝐿 − 1)...𝑁)) → 0 ≤ (𝐸 · ((𝑋𝑖)‘𝑆)))
499490, 486, 498fsumge0 15761 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
500499adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → 0 ≤ Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
501460, 488, 489, 500leadd2dd 11793 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + 0) ≤ (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
502459, 501eqbrtrrd 5131 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) ≤ (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
503151recnd 11202 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐿 − 2))) → ((𝑋𝑖)‘𝑆) ∈ ℂ)
504124, 176, 503fsummulc2 15750 . . . . . 6 (𝜑 → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) = Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)))
505504adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) = Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)))
506 stoweidlem26.2 . . . . . . . . 9 𝑗𝜑
507 elfzelz 13485 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...(𝐿 − 2)) → 𝑗 ∈ ℤ)
508507adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ∈ ℤ)
509508zred 12638 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ∈ ℝ)
510312adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) ∈ ℝ)
511120adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 1) ∈ ℝ)
512 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ∈ (0...(𝐿 − 2)))
513 0zd 12541 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 0 ∈ ℤ)
514128adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) ∈ ℤ)
515 elfz 13474 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝐿 − 2) ∈ ℤ) → (𝑗 ∈ (0...(𝐿 − 2)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝐿 − 2))))
516508, 513, 514, 515syl3anc 1373 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝑗 ∈ (0...(𝐿 − 2)) ↔ (0 ≤ 𝑗𝑗 ≤ (𝐿 − 2))))
517512, 516mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (0 ≤ 𝑗𝑗 ≤ (𝐿 − 2)))
518517simprd 495 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 ≤ (𝐿 − 2))
519116, 132, 108ltsub2d 11788 . . . . . . . . . . . . . . . 16 (𝜑 → (1 < 2 ↔ (𝐿 − 2) < (𝐿 − 1)))
520349, 519mpbii 233 . . . . . . . . . . . . . . 15 (𝜑 → (𝐿 − 2) < (𝐿 − 1))
521520adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 2) < (𝐿 − 1))
522509, 510, 511, 518, 521lelttrd 11332 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑗 < (𝐿 − 1))
523509, 511ltnled 11321 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝑗 < (𝐿 − 1) ↔ ¬ (𝐿 − 1) ≤ 𝑗))
524522, 523mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → ¬ (𝐿 − 1) ≤ 𝑗)
525524intnanrd 489 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → ¬ ((𝐿 − 1) ≤ 𝑗𝑗𝑁))
526375adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝐿 − 1) ∈ ℤ)
527129adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → 𝑁 ∈ ℤ)
528 elfz 13474 . . . . . . . . . . . 12 ((𝑗 ∈ ℤ ∧ (𝐿 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑗𝑗𝑁)))
529508, 526, 527, 528syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → (𝑗 ∈ ((𝐿 − 1)...𝑁) ↔ ((𝐿 − 1) ≤ 𝑗𝑗𝑁)))
530525, 529mtbird 325 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...(𝐿 − 2))) → ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁))
531530ex 412 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0...(𝐿 − 2)) → ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁)))
532506, 531ralrimi 3235 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (0...(𝐿 − 2)) ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁))
533 disj 4413 . . . . . . . 8 (((0...(𝐿 − 2)) ∩ ((𝐿 − 1)...𝑁)) = ∅ ↔ ∀𝑗 ∈ (0...(𝐿 − 2)) ¬ 𝑗 ∈ ((𝐿 − 1)...𝑁))
534532, 533sylibr 234 . . . . . . 7 (𝜑 → ((0...(𝐿 − 2)) ∩ ((𝐿 − 1)...𝑁)) = ∅)
535534adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → ((0...(𝐿 − 2)) ∩ ((𝐿 − 1)...𝑁)) = ∅)
536144adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ≤ 𝑁)
537128, 374, 1293jca 1128 . . . . . . . . . . 11 (𝜑 → ((𝐿 − 2) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ))
538537adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 2) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ))
539 elfz 13474 . . . . . . . . . 10 (((𝐿 − 2) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 − 2) ∈ (0...𝑁) ↔ (0 ≤ (𝐿 − 2) ∧ (𝐿 − 2) ≤ 𝑁)))
540538, 539syl 17 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − 2) ∈ (0...𝑁) ↔ (0 ≤ (𝐿 − 2) ∧ (𝐿 − 2) ≤ 𝑁)))
541252, 536, 540mpbir2and 713 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐿 − 2) ∈ (0...𝑁))
542 fzsplit 13511 . . . . . . . 8 ((𝐿 − 2) ∈ (0...𝑁) → (0...𝑁) = ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)))
543541, 542syl 17 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...𝑁) = ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)))
544263, 269, 2703eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((𝐿 − 2) + 1) = (𝐿 − 1))
545544oveq1d 7402 . . . . . . . . 9 (𝜑 → (((𝐿 − 2) + 1)...𝑁) = ((𝐿 − 1)...𝑁))
546545uneq2d 4131 . . . . . . . 8 (𝜑 → ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)) = ((0...(𝐿 − 2)) ∪ ((𝐿 − 1)...𝑁)))
547546adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐿 = 1) → ((0...(𝐿 − 2)) ∪ (((𝐿 − 2) + 1)...𝑁)) = ((0...(𝐿 − 2)) ∪ ((𝐿 − 1)...𝑁)))
548543, 547eqtrd 2764 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...𝑁) = ((0...(𝐿 − 2)) ∪ ((𝐿 − 1)...𝑁)))
549 fzfid 13938 . . . . . 6 ((𝜑 ∧ ¬ 𝐿 = 1) → (0...𝑁) ∈ Fin)
550176adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → 𝐸 ∈ ℂ)
55151recnd 11202 . . . . . . . 8 ((𝜑𝑖 ∈ (0...𝑁)) → ((𝑋𝑖)‘𝑆) ∈ ℂ)
552550, 551mulcld 11194 . . . . . . 7 ((𝜑𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
553552adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐿 = 1) ∧ 𝑖 ∈ (0...𝑁)) → (𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℂ)
554535, 548, 549, 553fsumsplit 15707 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) = (Σ𝑖 ∈ (0...(𝐿 − 2))(𝐸 · ((𝑋𝑖)‘𝑆)) + Σ𝑖 ∈ ((𝐿 − 1)...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
555502, 505, 5543brtr4d 5139 . . . 4 ((𝜑 ∧ ¬ 𝐿 = 1) → (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
556114, 153, 533jca 1128 . . . . . 6 (𝜑 → (((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ))
557556adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐿 = 1) → (((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ))
558 ltletr 11266 . . . . 5 ((((𝐿 − (4 / 3)) · 𝐸) ∈ ℝ ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∈ ℝ ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ ℝ) → ((((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
559557, 558syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐿 = 1) → ((((𝐿 − (4 / 3)) · 𝐸) < (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ∧ (𝐸 · Σ𝑖 ∈ (0...(𝐿 − 2))((𝑋𝑖)‘𝑆)) ≤ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆))))
560454, 555, 559mp2and 699 . . 3 ((𝜑 ∧ ¬ 𝐿 = 1) → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
561105, 560pm2.61dan 812 . 2 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
562 sumex 15654 . . 3 Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ V
56393oveq2d 7403 . . . . 5 (𝑡 = 𝑆 → (𝐸 · ((𝑋𝑖)‘𝑡)) = (𝐸 · ((𝑋𝑖)‘𝑆)))
564563sumeq2sdv 15669 . . . 4 (𝑡 = 𝑆 → Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
565 eqid 2729 . . . 4 (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡))) = (𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))
566564, 565fvmptg 6966 . . 3 ((𝑆𝑇 ∧ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)) ∈ V) → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
56749, 562, 566sylancl 586 . 2 (𝜑 → ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆) = Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑆)))
568561, 567breqtrrd 5135 1 (𝜑 → ((𝐿 − (4 / 3)) · 𝐸) < ((𝑡𝑇 ↦ Σ𝑖 ∈ (0...𝑁)(𝐸 · ((𝑋𝑖)‘𝑡)))‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wne 2925  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  0cn0 12442  cz 12529  cuz 12793  +crp 12951  ...cfz 13468  chash 14295  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  stoweidlem34  46032
  Copyright terms: Public domain W3C validator