![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc2or | Structured version Visualization version GIF version |
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3767 (false) and sbc6 3771 (true) conclusions. This is interesting since dfsbcq 3741 and dfsbcq2 3742 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc2or | ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3742 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | eqeq2 2748 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
3 | 2 | anbi1d 630 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
4 | 3 | exbidv 1924 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
5 | sb5 2267 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
6 | 1, 4, 5 | vtoclbg 3528 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
7 | 6 | orcd 871 | . 2 ⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
8 | pm5.15 1011 | . . 3 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
9 | vex 3449 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
10 | eleq1 2825 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
11 | 9, 10 | mpbii 232 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
12 | 11 | adantr 481 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝐴 ∈ V) |
13 | 12 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ¬ (𝑥 = 𝐴 ∧ 𝜑)) |
14 | 13 | nexdv 1939 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
15 | 11 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑥 = 𝐴) |
16 | 15 | pm2.21d 121 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝑥 = 𝐴 → 𝜑)) |
17 | 16 | alrimiv 1930 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
18 | 14, 17 | 2thd 264 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
19 | 18 | bibi2d 342 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
20 | 19 | orbi2d 914 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) ↔ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))))) |
21 | 8, 20 | mpbii 232 | . 2 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
22 | 7, 21 | pm2.61i 182 | 1 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∀wal 1539 = wceq 1541 ∃wex 1781 [wsb 2067 ∈ wcel 2106 Vcvv 3445 [wsbc 3739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3447 df-sbc 3740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |