Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbc2or | Structured version Visualization version GIF version |
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3744 (false) and sbc6 3748 (true) conclusions. This is interesting since dfsbcq 3718 and dfsbcq2 3719 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc2or | ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3719 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | eqeq2 2750 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
3 | 2 | anbi1d 630 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
4 | 3 | exbidv 1924 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
5 | sb5 2268 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
6 | 1, 4, 5 | vtoclbg 3507 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
7 | 6 | orcd 870 | . 2 ⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
8 | pm5.15 1010 | . . 3 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
9 | vex 3436 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
10 | eleq1 2826 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
11 | 9, 10 | mpbii 232 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
12 | 11 | adantr 481 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝐴 ∈ V) |
13 | 12 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ¬ (𝑥 = 𝐴 ∧ 𝜑)) |
14 | 13 | nexdv 1939 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
15 | 11 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑥 = 𝐴) |
16 | 15 | pm2.21d 121 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝑥 = 𝐴 → 𝜑)) |
17 | 16 | alrimiv 1930 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
18 | 14, 17 | 2thd 264 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
19 | 18 | bibi2d 343 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
20 | 19 | orbi2d 913 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) ↔ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))))) |
21 | 8, 20 | mpbii 232 | . 2 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
22 | 7, 21 | pm2.61i 182 | 1 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∀wal 1537 = wceq 1539 ∃wex 1782 [wsb 2067 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-sbc 3717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |