MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2or Structured version   Visualization version   GIF version

Theorem sbc2or 3692
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3711 (false) and sbc6 3715 (true) conclusions. This is interesting since dfsbcq 3685 and dfsbcq2 3686 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc2or (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbc2or
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3686 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 eqeq2 2748 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
32anbi1d 633 . . . . 5 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
43exbidv 1929 . . . 4 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
5 sb5 2274 . . . 4 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
61, 4, 5vtoclbg 3473 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
76orcd 873 . 2 (𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
8 pm5.15 1013 . . 3 (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑)))
9 vex 3402 . . . . . . . . . 10 𝑥 ∈ V
10 eleq1 2818 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V))
119, 10mpbii 236 . . . . . . . . 9 (𝑥 = 𝐴𝐴 ∈ V)
1211adantr 484 . . . . . . . 8 ((𝑥 = 𝐴𝜑) → 𝐴 ∈ V)
1312con3i 157 . . . . . . 7 𝐴 ∈ V → ¬ (𝑥 = 𝐴𝜑))
1413nexdv 1944 . . . . . 6 𝐴 ∈ V → ¬ ∃𝑥(𝑥 = 𝐴𝜑))
1511con3i 157 . . . . . . . 8 𝐴 ∈ V → ¬ 𝑥 = 𝐴)
1615pm2.21d 121 . . . . . . 7 𝐴 ∈ V → (𝑥 = 𝐴𝜑))
1716alrimiv 1935 . . . . . 6 𝐴 ∈ V → ∀𝑥(𝑥 = 𝐴𝜑))
1814, 172thd 268 . . . . 5 𝐴 ∈ V → (¬ ∃𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
1918bibi2d 346 . . . 4 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑)) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
2019orbi2d 916 . . 3 𝐴 ∈ V → ((([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑))) ↔ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))))
218, 20mpbii 236 . 2 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
227, 21pm2.61i 185 1 (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  wal 1541   = wceq 1543  wex 1787  [wsb 2072  wcel 2112  Vcvv 3398  [wsbc 3683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-v 3400  df-sbc 3684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator