MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2or Structured version   Visualization version   GIF version

Theorem sbc2or 3786
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3805 (false) and sbc6 3809 (true) conclusions. This is interesting since dfsbcq 3779 and dfsbcq2 3780 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc2or (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbc2or
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3780 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 eqeq2 2743 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
32anbi1d 629 . . . . 5 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
43exbidv 1923 . . . 4 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
5 sb5 2266 . . . 4 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
61, 4, 5vtoclbg 3544 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
76orcd 870 . 2 (𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
8 pm5.15 1010 . . 3 (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑)))
9 vex 3477 . . . . . . . . . 10 𝑥 ∈ V
10 eleq1 2820 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V))
119, 10mpbii 232 . . . . . . . . 9 (𝑥 = 𝐴𝐴 ∈ V)
1211adantr 480 . . . . . . . 8 ((𝑥 = 𝐴𝜑) → 𝐴 ∈ V)
1312con3i 154 . . . . . . 7 𝐴 ∈ V → ¬ (𝑥 = 𝐴𝜑))
1413nexdv 1938 . . . . . 6 𝐴 ∈ V → ¬ ∃𝑥(𝑥 = 𝐴𝜑))
1511con3i 154 . . . . . . . 8 𝐴 ∈ V → ¬ 𝑥 = 𝐴)
1615pm2.21d 121 . . . . . . 7 𝐴 ∈ V → (𝑥 = 𝐴𝜑))
1716alrimiv 1929 . . . . . 6 𝐴 ∈ V → ∀𝑥(𝑥 = 𝐴𝜑))
1814, 172thd 265 . . . . 5 𝐴 ∈ V → (¬ ∃𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
1918bibi2d 342 . . . 4 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑)) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
2019orbi2d 913 . . 3 𝐴 ∈ V → ((([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑))) ↔ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))))
218, 20mpbii 232 . 2 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
227, 21pm2.61i 182 1 (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  wal 1538   = wceq 1540  wex 1780  [wsb 2066  wcel 2105  Vcvv 3473  [wsbc 3777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-sbc 3778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator