| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc2or | Structured version Visualization version GIF version | ||
| Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3784 (false) and sbc6 3787 (true) conclusions. This is interesting since dfsbcq 3758 and dfsbcq2 3759 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbc2or | ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3759 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 2 | eqeq2 2742 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
| 3 | 2 | anbi1d 631 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
| 4 | 3 | exbidv 1921 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| 5 | sb5 2276 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 6 | 1, 4, 5 | vtoclbg 3526 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
| 7 | 6 | orcd 873 | . 2 ⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
| 8 | pm5.15 1014 | . . 3 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 9 | vex 3454 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 10 | eleq1 2817 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
| 11 | 9, 10 | mpbii 233 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝐴 ∈ V) |
| 13 | 12 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ¬ (𝑥 = 𝐴 ∧ 𝜑)) |
| 14 | 13 | nexdv 1936 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| 15 | 11 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑥 = 𝐴) |
| 16 | 15 | pm2.21d 121 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝑥 = 𝐴 → 𝜑)) |
| 17 | 16 | alrimiv 1927 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 18 | 14, 17 | 2thd 265 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| 19 | 18 | bibi2d 342 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
| 20 | 19 | orbi2d 915 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) ↔ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))))) |
| 21 | 8, 20 | mpbii 233 | . 2 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
| 22 | 7, 21 | pm2.61i 182 | 1 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∃wex 1779 [wsb 2065 ∈ wcel 2109 Vcvv 3450 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |