MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc2or Structured version   Visualization version   GIF version

Theorem sbc2or 3800
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3819 (false) and sbc6 3823 (true) conclusions. This is interesting since dfsbcq 3793 and dfsbcq2 3794 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc2or (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sbc2or
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3794 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 eqeq2 2747 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
32anbi1d 631 . . . . 5 (𝑦 = 𝐴 → ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝐴𝜑)))
43exbidv 1919 . . . 4 (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
5 sb5 2274 . . . 4 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
61, 4, 5vtoclbg 3557 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)))
76orcd 873 . 2 (𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
8 pm5.15 1014 . . 3 (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑)))
9 vex 3482 . . . . . . . . . 10 𝑥 ∈ V
10 eleq1 2827 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V))
119, 10mpbii 233 . . . . . . . . 9 (𝑥 = 𝐴𝐴 ∈ V)
1211adantr 480 . . . . . . . 8 ((𝑥 = 𝐴𝜑) → 𝐴 ∈ V)
1312con3i 154 . . . . . . 7 𝐴 ∈ V → ¬ (𝑥 = 𝐴𝜑))
1413nexdv 1934 . . . . . 6 𝐴 ∈ V → ¬ ∃𝑥(𝑥 = 𝐴𝜑))
1511con3i 154 . . . . . . . 8 𝐴 ∈ V → ¬ 𝑥 = 𝐴)
1615pm2.21d 121 . . . . . . 7 𝐴 ∈ V → (𝑥 = 𝐴𝜑))
1716alrimiv 1925 . . . . . 6 𝐴 ∈ V → ∀𝑥(𝑥 = 𝐴𝜑))
1814, 172thd 265 . . . . 5 𝐴 ∈ V → (¬ ∃𝑥(𝑥 = 𝐴𝜑) ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
1918bibi2d 342 . . . 4 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑)) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
2019orbi2d 915 . . 3 𝐴 ∈ V → ((([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑))) ↔ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))))
218, 20mpbii 233 . 2 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑))))
227, 21pm2.61i 182 1 (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1535   = wceq 1537  wex 1776  [wsb 2062  wcel 2106  Vcvv 3478  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-sbc 3792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator