![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc2or | Structured version Visualization version GIF version |
Description: The disjunction of two equivalences for class substitution does not require a class existence hypothesis. This theorem tells us that there are only 2 possibilities for [𝐴 / 𝑥]𝜑 behavior at proper classes, matching the sbc5 3832 (false) and sbc6 3836 (true) conclusions. This is interesting since dfsbcq 3806 and dfsbcq2 3807 (from which it is derived) do not appear to say anything obvious about proper class behavior. Note that this theorem does not tell us that it is always one or the other at proper classes; it could "flip" between false (the first disjunct) and true (the second disjunct) as a function of some other variable 𝑦 that 𝜑 or 𝐴 may contain. (Contributed by NM, 11-Oct-2004.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc2or | ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3807 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | eqeq2 2752 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
3 | 2 | anbi1d 630 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑥 = 𝑦 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
4 | 3 | exbidv 1920 | . . . 4 ⊢ (𝑦 = 𝐴 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
5 | sb5 2277 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
6 | 1, 4, 5 | vtoclbg 3569 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) |
7 | 6 | orcd 872 | . 2 ⊢ (𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
8 | pm5.15 1013 | . . 3 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
9 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
10 | eleq1 2832 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ V ↔ 𝐴 ∈ V)) | |
11 | 9, 10 | mpbii 233 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝐴 ∈ V) |
13 | 12 | con3i 154 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ¬ (𝑥 = 𝐴 ∧ 𝜑)) |
14 | 13 | nexdv 1935 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
15 | 11 | con3i 154 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑥 = 𝐴) |
16 | 15 | pm2.21d 121 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → (𝑥 = 𝐴 → 𝜑)) |
17 | 16 | alrimiv 1926 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
18 | 14, 17 | 2thd 265 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
19 | 18 | bibi2d 342 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ↔ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
20 | 19 | orbi2d 914 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ¬ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) ↔ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))))) |
21 | 8, 20 | mpbii 233 | . 2 ⊢ (¬ 𝐴 ∈ V → (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
22 | 7, 21 | pm2.61i 182 | 1 ⊢ (([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) ∨ ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∀wal 1535 = wceq 1537 ∃wex 1777 [wsb 2064 ∈ wcel 2108 Vcvv 3488 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sbc 3805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |