|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm5.53 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.53 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm5.53 | ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jaob 964 | . 2 ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 ∨ 𝜓) → 𝜃) ∧ (𝜒 → 𝜃))) | |
| 2 | jaob 964 | . 2 ⊢ (((𝜑 ∨ 𝜓) → 𝜃) ↔ ((𝜑 → 𝜃) ∧ (𝜓 → 𝜃))) | |
| 3 | 1, 2 | bianbi 627 | 1 ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: 3jaob 1428 | 
| Copyright terms: Public domain | W3C validator |