![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3jaob | Structured version Visualization version GIF version |
Description: Disjunction of three antecedents. (Contributed by NM, 13-Sep-2011.) (Proof shortened by Hongxiu Chen, 29-Jun-2025.) |
Ref | Expression |
---|---|
3jaob | ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.53 1005 | . 2 ⊢ ((((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓) ↔ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) ∧ (𝜃 → 𝜓))) | |
2 | df-3or 1088 | . . 3 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜃)) | |
3 | 2 | imbi1i 349 | . 2 ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓)) |
4 | df-3an 1089 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) ↔ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓)) ∧ (𝜃 → 𝜓))) | |
5 | 1, 3, 4 | 3bitr4i 303 | 1 ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |