|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm4.79 | Structured version Visualization version GIF version | ||
| Description: Theorem *4.79 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| pm4.79 | ⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝜓 → 𝜑) → (𝜓 → 𝜑)) | |
| 2 | id 22 | . . 3 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜑)) | |
| 3 | 1, 2 | jaoa 958 | . 2 ⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) → ((𝜓 ∧ 𝜒) → 𝜑)) | 
| 4 | simplim 167 | . . . 4 ⊢ (¬ (𝜓 → 𝜑) → 𝜓) | |
| 5 | pm3.3 448 | . . . 4 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (𝜓 → (𝜒 → 𝜑))) | |
| 6 | 4, 5 | syl5 34 | . . 3 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (¬ (𝜓 → 𝜑) → (𝜒 → 𝜑))) | 
| 7 | 6 | orrd 864 | . 2 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑))) | 
| 8 | 3, 7 | impbii 209 | 1 ⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 | 
| This theorem is referenced by: reuprg 4703 islinindfis 48366 | 
| Copyright terms: Public domain | W3C validator |