Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.79 | Structured version Visualization version GIF version |
Description: Theorem *4.79 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2013.) |
Ref | Expression |
---|---|
pm4.79 | ⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜓 → 𝜑) → (𝜓 → 𝜑)) | |
2 | id 22 | . . 3 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜑)) | |
3 | 1, 2 | jaoa 953 | . 2 ⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) → ((𝜓 ∧ 𝜒) → 𝜑)) |
4 | simplim 170 | . . . 4 ⊢ (¬ (𝜓 → 𝜑) → 𝜓) | |
5 | pm3.3 452 | . . . 4 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (𝜓 → (𝜒 → 𝜑))) | |
6 | 4, 5 | syl5 34 | . . 3 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (¬ (𝜓 → 𝜑) → (𝜒 → 𝜑))) |
7 | 6 | orrd 860 | . 2 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → ((𝜓 → 𝜑) ∨ (𝜒 → 𝜑))) |
8 | 3, 7 | impbii 212 | 1 ⊢ (((𝜓 → 𝜑) ∨ (𝜒 → 𝜑)) ↔ ((𝜓 ∧ 𝜒) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 |
This theorem is referenced by: reuprg 4599 islinindfis 45251 |
Copyright terms: Public domain | W3C validator |