Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineunray Structured version   Visualization version   GIF version

Theorem lineunray 36148
Description: A line is composed of a point and the two rays emerging from it. Theorem 6.15 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineunray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 Btwn ⟨𝑄, 𝑅⟩ → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅))))

Proof of Theorem lineunray
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
3 simpl21 1252 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
4 simpl22 1253 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
5 brcolinear 36060 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
76adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
8 olc 869 . . . . . . . . . . . . . 14 (𝑥 Btwn ⟨𝑃, 𝑄⟩ → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
98orcd 874 . . . . . . . . . . . . 13 (𝑥 Btwn ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
109a1i 11 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
11 simpl3l 1229 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑄)
1211necomd 2996 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄𝑃)
1312adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
14 simprl 771 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
15 simprr 773 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
1613, 14, 153jca 1129 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩))
17 simpl23 1254 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑅 ∈ (𝔼‘𝑁))
18 btwnconn2 36103 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
191, 4, 3, 17, 2, 18syl122anc 1381 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2019adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2116, 20mpd 15 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))
2221olcd 875 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2322expr 456 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
24 btwncom 36015 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ ↔ 𝑄 Btwn ⟨𝑃, 𝑥⟩))
251, 4, 2, 3, 24syl13anc 1374 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ ↔ 𝑄 Btwn ⟨𝑃, 𝑥⟩))
26 orc 868 . . . . . . . . . . . . . . 15 (𝑄 Btwn ⟨𝑃, 𝑥⟩ → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
2726orcd 874 . . . . . . . . . . . . . 14 (𝑄 Btwn ⟨𝑃, 𝑥⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2825, 27biimtrdi 253 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
2928adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
3010, 23, 293jaod 1431 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
317, 30sylbid 240 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
32 olc 869 . . . . . . . . . 10 (((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
3331, 32syl6 35 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
34 colineartriv1 36068 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
351, 3, 4, 34syl3anc 1373 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
36 breq1 5146 . . . . . . . . . . . 12 (𝑥 = 𝑃 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑃 Colinear ⟨𝑃, 𝑄⟩))
3735, 36syl5ibrcom 247 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 = 𝑃𝑥 Colinear ⟨𝑃, 𝑄⟩))
3837adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 = 𝑃𝑥 Colinear ⟨𝑃, 𝑄⟩))
39 btwncolinear3 36072 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
401, 3, 2, 4, 39syl13anc 1374 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
41 btwncolinear5 36074 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
421, 3, 4, 2, 41syl13anc 1374 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4340, 42jaod 860 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4443adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
45 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑅)
4645adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃𝑅)
47 simprl 771 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
48 simprr 773 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑅 Btwn ⟨𝑃, 𝑥⟩)
4946, 47, 483jca 1129 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → (𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩))
50 btwnouttr 36025 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
511, 4, 3, 17, 2, 50syl122anc 1381 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
5251adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
5349, 52mpd 15 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
54 btwncolinear4 36073 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
551, 4, 2, 3, 54syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5655adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5753, 56mpd 15 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
5857expr 456 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
59 simprr 773 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Btwn ⟨𝑃, 𝑅⟩)
601, 2, 3, 17, 59btwncomand 36016 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Btwn ⟨𝑅, 𝑃⟩)
61 simprl 771 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
621, 3, 4, 17, 61btwncomand 36016 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑅, 𝑄⟩)
631, 17, 2, 3, 4, 60, 62btwnexch3and 36022 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑥, 𝑄⟩)
64 btwncolinear2 36071 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
651, 2, 4, 3, 64syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6665adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6763, 66mpd 15 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
6867expr 456 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Btwn ⟨𝑃, 𝑅⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6958, 68jaod 860 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7044, 69jaod 860 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7138, 70jaod 860 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7233, 71impbid 212 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
73 pm5.63 1022 . . . . . . . . 9 ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (𝑥 = 𝑃 ∨ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
74 df-ne 2941 . . . . . . . . . . . 12 (𝑥𝑃 ↔ ¬ 𝑥 = 𝑃)
7574anbi1i 624 . . . . . . . . . . 11 ((𝑥𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
76 andi 1010 . . . . . . . . . . 11 ((𝑥𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
7775, 76bitr3i 277 . . . . . . . . . 10 ((¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
7877orbi2i 913 . . . . . . . . 9 ((𝑥 = 𝑃 ∨ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
7973, 78bitri 275 . . . . . . . 8 ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
8072, 79bitrdi 287 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))))
81 broutsideof2 36123 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
821, 3, 4, 2, 81syl13anc 1374 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
83 3simpc 1151 . . . . . . . . . . . 12 ((𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
84 simpl3l 1229 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑃𝑄)
8584necomd 2996 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑄𝑃)
86 simprrl 781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑥𝑃)
87 simprrr 782 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
8885, 86, 873jca 1129 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
8988expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
9083, 89impbid2 226 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ↔ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
9182, 90bitrd 279 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
92 broutsideof2 36123 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
931, 3, 17, 2, 92syl13anc 1374 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
94 3simpc 1151 . . . . . . . . . . . 12 ((𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
95 simpl3r 1230 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑃𝑅)
9695necomd 2996 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑅𝑃)
97 simprrl 781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑥𝑃)
98 simprrr 782 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))
9996, 97, 983jca 1129 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
10099expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10194, 100impbid2 226 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) ↔ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10293, 101bitrd 279 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10391, 102orbi12d 919 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
104103adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
105104orbi2d 916 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))))
10680, 105bitr4d 282 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))))
107 orcom 871 . . . . . . 7 ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ∨ 𝑥 = 𝑃))
108 or32 926 . . . . . . 7 (((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ∨ 𝑥 = 𝑃) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))
109107, 108bitri 275 . . . . . 6 ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))
110106, 109bitrdi 287 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)))
111110an32s 652 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)))
112111rabbidva 3443 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)})
113 simp1 1137 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑁 ∈ ℕ)
114 simp21 1207 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃 ∈ (𝔼‘𝑁))
115 simp22 1208 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑄 ∈ (𝔼‘𝑁))
116 simp3l 1202 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑄)
117 fvline2 36147 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
118113, 114, 115, 116, 117syl13anc 1374 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
119118adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
120 fvray 36142 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Ray𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩})
121113, 114, 115, 116, 120syl13anc 1374 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Ray𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩})
122 rabsn 4721 . . . . . . . . 9 (𝑃 ∈ (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃} = {𝑃})
123114, 122syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃} = {𝑃})
124123eqcomd 2743 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → {𝑃} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃})
125121, 124uneq12d 4169 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → ((𝑃Ray𝑄) ∪ {𝑃}) = ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}))
126 simp23 1209 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑅 ∈ (𝔼‘𝑁))
127 simp3r 1203 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑅)
128 fvray 36142 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃𝑅)) → (𝑃Ray𝑅) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
129113, 114, 126, 127, 128syl13anc 1374 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Ray𝑅) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
130125, 129uneq12d 4169 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}))
131130adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}))
132 unrab 4315 . . . . . 6 ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) = {𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)}
133132uneq1i 4164 . . . . 5 (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = ({𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
134 unrab 4315 . . . . 5 ({𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)}
135133, 134eqtri 2765 . . . 4 (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)}
136131, 135eqtrdi 2793 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)})
137112, 119, 1363eqtr4d 2787 . 2 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)))
138137ex 412 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 Btwn ⟨𝑄, 𝑅⟩ → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3o 1086  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436  cun 3949  {csn 4626  cop 4632   class class class wbr 5143  cfv 6561  (class class class)co 7431  cn 12266  𝔼cee 28903   Btwn cbtwn 28904   Colinear ccolin 36038  OutsideOfcoutsideof 36120  Linecline2 36135  Raycray 36136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-ee 28906  df-btwn 28907  df-cgr 28908  df-ofs 35984  df-colinear 36040  df-ifs 36041  df-cgr3 36042  df-fs 36043  df-outsideof 36121  df-line2 36138  df-ray 36139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator