Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineunray Structured version   Visualization version   GIF version

Theorem lineunray 36160
Description: A line is composed of a point and the two rays emerging from it. Theorem 6.15 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineunray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 Btwn ⟨𝑄, 𝑅⟩ → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅))))

Proof of Theorem lineunray
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2 simpr 484 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
3 simpl21 1252 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
4 simpl22 1253 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
5 brcolinear 36072 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
61, 2, 3, 4, 5syl13anc 1374 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
76adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
8 olc 868 . . . . . . . . . . . . . 14 (𝑥 Btwn ⟨𝑃, 𝑄⟩ → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
98orcd 873 . . . . . . . . . . . . 13 (𝑥 Btwn ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
109a1i 11 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
11 simpl3l 1229 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑄)
1211necomd 2981 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄𝑃)
1312adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
14 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
15 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
1613, 14, 153jca 1128 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩))
17 simpl23 1254 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑅 ∈ (𝔼‘𝑁))
18 btwnconn2 36115 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
191, 4, 3, 17, 2, 18syl122anc 1381 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2019adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2116, 20mpd 15 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))
2221olcd 874 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2322expr 456 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
24 btwncom 36027 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ ↔ 𝑄 Btwn ⟨𝑃, 𝑥⟩))
251, 4, 2, 3, 24syl13anc 1374 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ ↔ 𝑄 Btwn ⟨𝑃, 𝑥⟩))
26 orc 867 . . . . . . . . . . . . . . 15 (𝑄 Btwn ⟨𝑃, 𝑥⟩ → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
2726orcd 873 . . . . . . . . . . . . . 14 (𝑄 Btwn ⟨𝑃, 𝑥⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2825, 27biimtrdi 253 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
2928adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
3010, 23, 293jaod 1431 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
317, 30sylbid 240 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
32 olc 868 . . . . . . . . . 10 (((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
3331, 32syl6 35 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
34 colineartriv1 36080 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
351, 3, 4, 34syl3anc 1373 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
36 breq1 5092 . . . . . . . . . . . 12 (𝑥 = 𝑃 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑃 Colinear ⟨𝑃, 𝑄⟩))
3735, 36syl5ibrcom 247 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 = 𝑃𝑥 Colinear ⟨𝑃, 𝑄⟩))
3837adantr 480 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 = 𝑃𝑥 Colinear ⟨𝑃, 𝑄⟩))
39 btwncolinear3 36084 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
401, 3, 2, 4, 39syl13anc 1374 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
41 btwncolinear5 36086 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
421, 3, 4, 2, 41syl13anc 1374 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4340, 42jaod 859 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4443adantr 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
45 simpl3r 1230 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑅)
4645adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃𝑅)
47 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
48 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑅 Btwn ⟨𝑃, 𝑥⟩)
4946, 47, 483jca 1128 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → (𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩))
50 btwnouttr 36037 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
511, 4, 3, 17, 2, 50syl122anc 1381 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
5251adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
5349, 52mpd 15 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
54 btwncolinear4 36085 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
551, 4, 2, 3, 54syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5655adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5753, 56mpd 15 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
5857expr 456 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
59 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Btwn ⟨𝑃, 𝑅⟩)
601, 2, 3, 17, 59btwncomand 36028 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Btwn ⟨𝑅, 𝑃⟩)
61 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
621, 3, 4, 17, 61btwncomand 36028 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑅, 𝑄⟩)
631, 17, 2, 3, 4, 60, 62btwnexch3and 36034 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑥, 𝑄⟩)
64 btwncolinear2 36083 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
651, 2, 4, 3, 64syl13anc 1374 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6665adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6763, 66mpd 15 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
6867expr 456 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Btwn ⟨𝑃, 𝑅⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6958, 68jaod 859 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7044, 69jaod 859 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7138, 70jaod 859 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7233, 71impbid 212 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
73 pm5.63 1021 . . . . . . . . 9 ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (𝑥 = 𝑃 ∨ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
74 df-ne 2927 . . . . . . . . . . . 12 (𝑥𝑃 ↔ ¬ 𝑥 = 𝑃)
7574anbi1i 624 . . . . . . . . . . 11 ((𝑥𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
76 andi 1009 . . . . . . . . . . 11 ((𝑥𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
7775, 76bitr3i 277 . . . . . . . . . 10 ((¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
7877orbi2i 912 . . . . . . . . 9 ((𝑥 = 𝑃 ∨ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
7973, 78bitri 275 . . . . . . . 8 ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
8072, 79bitrdi 287 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))))
81 broutsideof2 36135 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
821, 3, 4, 2, 81syl13anc 1374 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
83 3simpc 1150 . . . . . . . . . . . 12 ((𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
84 simpl3l 1229 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑃𝑄)
8584necomd 2981 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑄𝑃)
86 simprrl 780 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑥𝑃)
87 simprrr 781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
8885, 86, 873jca 1128 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
8988expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
9083, 89impbid2 226 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ↔ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
9182, 90bitrd 279 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
92 broutsideof2 36135 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
931, 3, 17, 2, 92syl13anc 1374 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
94 3simpc 1150 . . . . . . . . . . . 12 ((𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
95 simpl3r 1230 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑃𝑅)
9695necomd 2981 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑅𝑃)
97 simprrl 780 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑥𝑃)
98 simprrr 781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))
9996, 97, 983jca 1128 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
10099expr 456 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10194, 100impbid2 226 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) ↔ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10293, 101bitrd 279 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10391, 102orbi12d 918 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
104103adantr 480 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
105104orbi2d 915 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))))
10680, 105bitr4d 282 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))))
107 orcom 870 . . . . . . 7 ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ∨ 𝑥 = 𝑃))
108 or32 925 . . . . . . 7 (((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ∨ 𝑥 = 𝑃) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))
109107, 108bitri 275 . . . . . 6 ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))
110106, 109bitrdi 287 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)))
111110an32s 652 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)))
112111rabbidva 3399 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)})
113 simp1 1136 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑁 ∈ ℕ)
114 simp21 1207 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃 ∈ (𝔼‘𝑁))
115 simp22 1208 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑄 ∈ (𝔼‘𝑁))
116 simp3l 1202 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑄)
117 fvline2 36159 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
118113, 114, 115, 116, 117syl13anc 1374 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
119118adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
120 fvray 36154 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Ray𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩})
121113, 114, 115, 116, 120syl13anc 1374 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Ray𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩})
122 rabsn 4672 . . . . . . . . 9 (𝑃 ∈ (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃} = {𝑃})
123114, 122syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃} = {𝑃})
124123eqcomd 2736 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → {𝑃} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃})
125121, 124uneq12d 4117 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → ((𝑃Ray𝑄) ∪ {𝑃}) = ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}))
126 simp23 1209 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑅 ∈ (𝔼‘𝑁))
127 simp3r 1203 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑅)
128 fvray 36154 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃𝑅)) → (𝑃Ray𝑅) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
129113, 114, 126, 127, 128syl13anc 1374 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Ray𝑅) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
130125, 129uneq12d 4117 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}))
131130adantr 480 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}))
132 unrab 4263 . . . . . 6 ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) = {𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)}
133132uneq1i 4112 . . . . 5 (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = ({𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
134 unrab 4263 . . . . 5 ({𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)}
135133, 134eqtri 2753 . . . 4 (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)}
136131, 135eqtrdi 2781 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)})
137112, 119, 1363eqtr4d 2775 . 2 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)))
138137ex 412 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 Btwn ⟨𝑄, 𝑅⟩ → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2110  wne 2926  {crab 3393  cun 3898  {csn 4574  cop 4580   class class class wbr 5089  cfv 6477  (class class class)co 7341  cn 12117  𝔼cee 28859   Btwn cbtwn 28860   Colinear ccolin 36050  OutsideOfcoutsideof 36132  Linecline2 36147  Raycray 36148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-ee 28862  df-btwn 28863  df-cgr 28864  df-ofs 35996  df-colinear 36052  df-ifs 36053  df-cgr3 36054  df-fs 36055  df-outsideof 36133  df-line2 36150  df-ray 36151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator