Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lineunray Structured version   Visualization version   GIF version

Theorem lineunray 33721
Description: A line is composed of a point and the two rays emerging from it. Theorem 6.15 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
lineunray ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 Btwn ⟨𝑄, 𝑅⟩ → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅))))

Proof of Theorem lineunray
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
2 simpr 488 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
3 simpl21 1248 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
4 simpl22 1249 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
5 brcolinear 33633 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
61, 2, 3, 4, 5syl13anc 1369 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
76adantr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩)))
8 olc 865 . . . . . . . . . . . . . 14 (𝑥 Btwn ⟨𝑃, 𝑄⟩ → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
98orcd 870 . . . . . . . . . . . . 13 (𝑥 Btwn ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
109a1i 11 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
11 simpl3l 1225 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑄)
1211necomd 3042 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑄𝑃)
1312adantr 484 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑄𝑃)
14 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
15 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
1613, 14, 153jca 1125 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩))
17 simpl23 1250 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑅 ∈ (𝔼‘𝑁))
18 btwnconn2 33676 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
191, 4, 3, 17, 2, 18syl122anc 1376 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2019adantr 484 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄𝑃𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2116, 20mpd 15 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))
2221olcd 871 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑃 Btwn ⟨𝑄, 𝑥⟩)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2322expr 460 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
24 btwncom 33588 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ ↔ 𝑄 Btwn ⟨𝑃, 𝑥⟩))
251, 4, 2, 3, 24syl13anc 1369 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ ↔ 𝑄 Btwn ⟨𝑃, 𝑥⟩))
26 orc 864 . . . . . . . . . . . . . . 15 (𝑄 Btwn ⟨𝑃, 𝑥⟩ → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
2726orcd 870 . . . . . . . . . . . . . 14 (𝑄 Btwn ⟨𝑃, 𝑥⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
2825, 27syl6bi 256 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
2928adantr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑄 Btwn ⟨𝑥, 𝑃⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
3010, 23, 293jaod 1425 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 Btwn ⟨𝑃, 𝑄⟩ ∨ 𝑃 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑄 Btwn ⟨𝑥, 𝑃⟩) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
317, 30sylbid 243 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
32 olc 865 . . . . . . . . . 10 (((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
3331, 32syl6 35 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ → (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
34 colineartriv1 33641 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
351, 3, 4, 34syl3anc 1368 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃 Colinear ⟨𝑃, 𝑄⟩)
36 breq1 5033 . . . . . . . . . . . 12 (𝑥 = 𝑃 → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ 𝑃 Colinear ⟨𝑃, 𝑄⟩))
3735, 36syl5ibrcom 250 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 = 𝑃𝑥 Colinear ⟨𝑃, 𝑄⟩))
3837adantr 484 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 = 𝑃𝑥 Colinear ⟨𝑃, 𝑄⟩))
39 btwncolinear3 33645 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
401, 3, 2, 4, 39syl13anc 1369 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
41 btwncolinear5 33647 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
421, 3, 4, 2, 41syl13anc 1369 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Btwn ⟨𝑃, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4340, 42jaod 856 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
4443adantr 484 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
45 simpl3r 1226 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑃𝑅)
4645adantr 484 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃𝑅)
47 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
48 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑅 Btwn ⟨𝑃, 𝑥⟩)
4946, 47, 483jca 1125 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → (𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩))
50 btwnouttr 33598 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
511, 4, 3, 17, 2, 50syl122anc 1376 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
5251adantr 484 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → ((𝑃𝑅𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩) → 𝑃 Btwn ⟨𝑄, 𝑥⟩))
5349, 52mpd 15 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑃 Btwn ⟨𝑄, 𝑥⟩)
54 btwncolinear4 33646 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
551, 4, 2, 3, 54syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5655adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → (𝑃 Btwn ⟨𝑄, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
5753, 56mpd 15 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑅 Btwn ⟨𝑃, 𝑥⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
5857expr 460 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
59 simprr 772 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Btwn ⟨𝑃, 𝑅⟩)
601, 2, 3, 17, 59btwncomand 33589 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Btwn ⟨𝑅, 𝑃⟩)
61 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑄, 𝑅⟩)
621, 3, 4, 17, 61btwncomand 33589 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑅, 𝑄⟩)
631, 17, 2, 3, 4, 60, 62btwnexch3and 33595 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑃 Btwn ⟨𝑥, 𝑄⟩)
64 btwncolinear2 33644 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
651, 2, 4, 3, 64syl13anc 1369 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6665adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑃 Btwn ⟨𝑥, 𝑄⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6763, 66mpd 15 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑃 Btwn ⟨𝑄, 𝑅⟩ ∧ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩)
6867expr 460 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Btwn ⟨𝑃, 𝑅⟩ → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
6958, 68jaod 856 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7044, 69jaod 856 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7138, 70jaod 856 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) → 𝑥 Colinear ⟨𝑃, 𝑄⟩))
7233, 71impbid 215 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
73 pm5.63 1017 . . . . . . . . 9 ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (𝑥 = 𝑃 ∨ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
74 df-ne 2988 . . . . . . . . . . . 12 (𝑥𝑃 ↔ ¬ 𝑥 = 𝑃)
7574anbi1i 626 . . . . . . . . . . 11 ((𝑥𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
76 andi 1005 . . . . . . . . . . 11 ((𝑥𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
7775, 76bitr3i 280 . . . . . . . . . 10 ((¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
7877orbi2i 910 . . . . . . . . 9 ((𝑥 = 𝑃 ∨ (¬ 𝑥 = 𝑃 ∧ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
7973, 78bitri 278 . . . . . . . 8 ((𝑥 = 𝑃 ∨ ((𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩) ∨ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
8072, 79syl6bb 290 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))))
81 broutsideof2 33696 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
821, 3, 4, 2, 81syl13anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
83 3simpc 1147 . . . . . . . . . . . 12 ((𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
84 simpl3l 1225 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑃𝑄)
8584necomd 3042 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑄𝑃)
86 simprrl 780 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → 𝑥𝑃)
87 simprrr 781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))
8885, 86, 873jca 1125 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))) → (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)))
8988expr 460 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) → (𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
9083, 89impbid2 229 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄𝑃𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ↔ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
9182, 90bitrd 282 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑄, 𝑥⟩ ↔ (𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩))))
92 broutsideof2 33696 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
931, 3, 17, 2, 92syl13anc 1369 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
94 3simpc 1147 . . . . . . . . . . . 12 ((𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
95 simpl3r 1226 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑃𝑅)
9695necomd 3042 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑅𝑃)
97 simprrl 780 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → 𝑥𝑃)
98 simprrr 781 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))
9996, 97, 983jca 1125 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))) → (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))
10099expr 460 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) → (𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10194, 100impbid2 229 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑅𝑃𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)) ↔ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10293, 101bitrd 282 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑃OutsideOf⟨𝑅, 𝑥⟩ ↔ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))
10391, 102orbi12d 916 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
104103adantr 484 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ↔ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩)))))
105104orbi2d 913 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ (𝑥 = 𝑃 ∨ ((𝑥𝑃 ∧ (𝑄 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑄⟩)) ∨ (𝑥𝑃 ∧ (𝑅 Btwn ⟨𝑃, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑃, 𝑅⟩))))))
10680, 105bitr4d 285 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ (𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))))
107 orcom 867 . . . . . . 7 ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ∨ 𝑥 = 𝑃))
108 or32 923 . . . . . . 7 (((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩) ∨ 𝑥 = 𝑃) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))
109107, 108bitri 278 . . . . . 6 ((𝑥 = 𝑃 ∨ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)) ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩))
110106, 109syl6bb 290 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)))
111110an32s 651 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝑥 Colinear ⟨𝑃, 𝑄⟩ ↔ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)))
112111rabbidva 3425 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩} = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)})
113 simp1 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑁 ∈ ℕ)
114 simp21 1203 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃 ∈ (𝔼‘𝑁))
115 simp22 1204 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑄 ∈ (𝔼‘𝑁))
116 simp3l 1198 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑄)
117 fvline2 33720 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
118113, 114, 115, 116, 117syl13anc 1369 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
119118adantr 484 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃Line𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 Colinear ⟨𝑃, 𝑄⟩})
120 fvray 33715 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃𝑄)) → (𝑃Ray𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩})
121113, 114, 115, 116, 120syl13anc 1369 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Ray𝑄) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩})
122 rabsn 4617 . . . . . . . . 9 (𝑃 ∈ (𝔼‘𝑁) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃} = {𝑃})
123114, 122syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃} = {𝑃})
124123eqcomd 2804 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → {𝑃} = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃})
125121, 124uneq12d 4091 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → ((𝑃Ray𝑄) ∪ {𝑃}) = ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}))
126 simp23 1205 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑅 ∈ (𝔼‘𝑁))
127 simp3r 1199 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → 𝑃𝑅)
128 fvray 33715 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃𝑅)) → (𝑃Ray𝑅) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
129113, 114, 126, 127, 128syl13anc 1369 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃Ray𝑅) = {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
130125, 129uneq12d 4091 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}))
131130adantr 484 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}))
132 unrab 4226 . . . . . 6 ({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) = {𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)}
133132uneq1i 4086 . . . . 5 (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = ({𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩})
134 unrab 4226 . . . . 5 ({𝑥 ∈ (𝔼‘𝑁) ∣ (𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃)} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)}
135133, 134eqtri 2821 . . . 4 (({𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑄, 𝑥⟩} ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑥 = 𝑃}) ∪ {𝑥 ∈ (𝔼‘𝑁) ∣ 𝑃OutsideOf⟨𝑅, 𝑥⟩}) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)}
136131, 135eqtrdi 2849 . . 3 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)) = {𝑥 ∈ (𝔼‘𝑁) ∣ ((𝑃OutsideOf⟨𝑄, 𝑥⟩ ∨ 𝑥 = 𝑃) ∨ 𝑃OutsideOf⟨𝑅, 𝑥⟩)})
137112, 119, 1363eqtr4d 2843 . 2 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) ∧ 𝑃 Btwn ⟨𝑄, 𝑅⟩) → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅)))
138137ex 416 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃𝑄𝑃𝑅)) → (𝑃 Btwn ⟨𝑄, 𝑅⟩ → (𝑃Line𝑄) = (((𝑃Ray𝑄) ∪ {𝑃}) ∪ (𝑃Ray𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wne 2987  {crab 3110  cun 3879  {csn 4525  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  cn 11625  𝔼cee 26682   Btwn cbtwn 26683   Colinear ccolin 33611  OutsideOfcoutsideof 33693  Linecline2 33708  Raycray 33709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-ee 26685  df-btwn 26686  df-cgr 26687  df-ofs 33557  df-colinear 33613  df-ifs 33614  df-cgr3 33615  df-fs 33616  df-outsideof 33694  df-line2 33711  df-ray 33712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator