| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran.1 | ⊢ 𝜓 |
| mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
| 3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2 710 mpbir2an 711 pm5.63 1021 equsexALT 2417 velcomp 3929 ddif 4104 dfun2 4233 dfin2 4234 0pss 4410 pssv 4412 disj4 4422 pwpwab 5067 zfpair 5376 opabn0 5513 relop 5814 ssrnres 6151 funopab 6551 funcnv2 6584 fnres 6645 dffv2 6956 idref 7118 rnoprab 7494 suppssr 8174 frrlem9 8273 brwitnlem 8471 omeu 8549 naddcllem 8640 elixp 8877 1sdomOLD 9196 dfsup2 9395 card2inf 9508 harndom 9515 dford2 9573 cantnfp1lem3 9633 cantnfp1 9634 cantnflem1 9642 ttrclresv 9670 tz9.12lem3 9742 djulf1o 9865 djurf1o 9866 dfac4 10075 dfac12a 10102 cflem 10198 cflemOLD 10199 cfsmolem 10223 dffin7-2 10351 dfacfin7 10352 brdom3 10481 iunfo 10492 gch3 10629 lbfzo0 13660 fzo1lb 13674 1elfzo1 13675 gcdcllem3 16471 1nprm 16649 cygctb 19822 expmhm 21353 expghm 21385 opsrtoslem2 21963 mat1dimelbas 22358 basdif0 22840 txdis1cn 23522 trfil2 23774 txflf 23893 clsnsg 23997 tgpconncomp 24000 perfdvf 25804 wilthlem3 26980 noeta2 27696 etasslt2 27726 made0 27785 bdayon 28173 noseqind 28186 mptelee 28822 iscplgr 29342 rgrprcx 29520 blocnilem 30733 h1de2i 31482 nmop0 31915 nmfn0 31916 lnopconi 31963 lnfnconi 31984 stcltr2i 32204 funcnvmpt 32591 1stpreima 32630 2ndpreima 32631 suppss3 32647 onvf1od 35094 fmla0 35369 fmlasuc0 35371 elmrsubrn 35507 dftr6 35738 br6 35744 dford5reg 35770 txpss3v 35866 brtxp 35868 brpprod 35873 brsset 35877 dfon3 35880 brtxpsd 35882 brtxpsd2 35883 dffun10 35902 elfuns 35903 funpartlem 35930 fullfunfv 35935 dfrdg4 35939 dfint3 35940 brub 35942 hfext 36171 neibastop2lem 36348 bj-equsexval 36648 bj-elid3 37155 finxp0 37379 finxp1o 37380 brvdif 38250 xrnss3v 38354 ntrneiel2 44075 ntrneik4w 44089 ismnushort 44290 permaxpow 44999 funressnvmo 47046 dfdfat2 47129 |
| Copyright terms: Public domain | W3C validator |