![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran.1 | ⊢ 𝜓 |
mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpbiran2 710 mpbir2an 711 pm5.63 1021 equsexALT 2421 velcomp 3977 ddif 4150 dfun2 4275 dfin2 4276 0pss 4452 pssv 4454 disj4 4464 pwpwab 5107 zfpair 5426 opabn0 5562 relop 5863 ssrnres 6199 funopab 6602 funcnv2 6635 fnres 6695 dffv2 7003 idref 7165 rnoprab 7536 suppssr 8218 frrlem9 8317 brwitnlem 8543 omeu 8621 naddcllem 8712 elixp 8942 1sdomOLD 9282 dfsup2 9481 card2inf 9592 harndom 9599 dford2 9657 cantnfp1lem3 9717 cantnfp1 9718 cantnflem1 9726 ttrclresv 9754 tz9.12lem3 9826 djulf1o 9949 djurf1o 9950 dfac4 10159 dfac12a 10186 cflem 10282 cflemOLD 10283 cfsmolem 10307 dffin7-2 10435 dfacfin7 10436 brdom3 10565 iunfo 10576 gch3 10713 lbfzo0 13735 fzo1lb 13749 gcdcllem3 16534 1nprm 16712 cygctb 19924 expmhm 21471 expghm 21503 opsrtoslem2 22097 mat1dimelbas 22492 basdif0 22975 txdis1cn 23658 trfil2 23910 txflf 24029 clsnsg 24133 tgpconncomp 24136 perfdvf 25952 wilthlem3 27127 noeta2 27843 etasslt2 27873 made0 27926 noseqind 28312 mptelee 28924 iscplgr 29446 rgrprcx 29624 blocnilem 30832 h1de2i 31581 nmop0 32014 nmfn0 32015 lnopconi 32062 lnfnconi 32083 stcltr2i 32303 funcnvmpt 32683 1stpreima 32721 2ndpreima 32722 suppss3 32741 fmla0 35366 fmlasuc0 35368 elmrsubrn 35504 dftr6 35730 br6 35736 dford5reg 35763 txpss3v 35859 brtxp 35861 brpprod 35866 brsset 35870 dfon3 35873 brtxpsd 35875 brtxpsd2 35876 dffun10 35895 elfuns 35896 funpartlem 35923 fullfunfv 35928 dfrdg4 35932 dfint3 35933 brub 35935 hfext 36164 neibastop2lem 36342 bj-equsexval 36642 bj-elid3 37149 finxp0 37373 finxp1o 37374 brvdif 38242 xrnss3v 38353 ntrneiel2 44075 ntrneik4w 44089 ismnushort 44296 funressnvmo 46994 dfdfat2 47077 |
Copyright terms: Public domain | W3C validator |