Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran.1 | ⊢ 𝜓 |
mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
3 | 2 | biantrur 531 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpbiran2 707 mpbir2an 708 pm5.63 1017 equsexALT 2420 velcomp 3903 ddif 4072 dfun2 4194 dfin2 4195 0pss 4379 pssv 4381 disj4 4393 pwpwab 5033 zfpair 5345 opabn0 5467 relop 5762 ssrnres 6086 funopab 6476 funcnv2 6509 fnres 6568 dffv2 6872 idref 7027 rnoprab 7387 suppssr 8021 frrlem9 8119 brwitnlem 8346 omeu 8425 elixp 8701 1sdom 9034 dfsup2 9212 card2inf 9323 harndom 9330 dford2 9387 cantnfp1lem3 9447 cantnfp1 9448 cantnflem1 9456 ttrclresv 9484 tz9.12lem3 9556 djulf1o 9679 djurf1o 9680 dfac4 9887 dfac12a 9913 cflem 10011 cfsmolem 10035 dffin7-2 10163 dfacfin7 10164 brdom3 10293 iunfo 10304 gch3 10441 lbfzo0 13436 gcdcllem3 16217 1nprm 16393 cygctb 19502 expmhm 20676 expghm 20706 opsrtoslem2 21272 mat1dimelbas 21629 basdif0 22112 txdis1cn 22795 trfil2 23047 txflf 23166 clsnsg 23270 tgpconncomp 23273 perfdvf 25076 wilthlem3 26228 mptelee 27272 iscplgr 27791 rgrprcx 27968 blocnilem 29175 h1de2i 29924 nmop0 30357 nmfn0 30358 lnopconi 30405 lnfnconi 30426 stcltr2i 30646 funcnvmpt 31013 1stpreima 31048 2ndpreima 31049 suppss3 31068 fmla0 33353 fmlasuc0 33355 elmrsubrn 33491 dftr6 33727 br6 33733 dford5reg 33767 naddcllem 33840 noeta2 33988 etasslt2 34017 made0 34066 txpss3v 34189 brtxp 34191 brpprod 34196 brsset 34200 dfon3 34203 brtxpsd 34205 brtxpsd2 34206 dffun10 34225 elfuns 34226 funpartlem 34253 fullfunfv 34258 dfrdg4 34262 dfint3 34263 brub 34265 hfext 34494 neibastop2lem 34558 bj-equsexval 34850 bj-elid3 35347 finxp0 35571 finxp1o 35572 brvdif 36408 xrnss3v 36509 ntrneiel2 41703 ntrneik4w 41717 ismnushort 41926 funressnvmo 44550 dfdfat2 44631 |
Copyright terms: Public domain | W3C validator |