Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran.1 | ⊢ 𝜓 |
mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpbiran2 706 mpbir2an 707 pm5.63 1016 equsexALT 2419 velcomp 3898 ddif 4067 dfun2 4190 dfin2 4191 0pss 4375 pssv 4377 disj4 4389 pwpwab 5028 zfpair 5339 opabn0 5459 relop 5748 ssrnres 6070 funopab 6453 funcnv2 6486 fnres 6543 dffv2 6845 idref 7000 rnoprab 7356 suppssr 7983 frrlem9 8081 brwitnlem 8299 omeu 8378 elixp 8650 1sdom 8955 dfsup2 9133 card2inf 9244 harndom 9251 dford2 9308 cantnfp1lem3 9368 cantnfp1 9369 cantnflem1 9377 tz9.12lem3 9478 djulf1o 9601 djurf1o 9602 dfac4 9809 dfac12a 9835 cflem 9933 cfsmolem 9957 dffin7-2 10085 dfacfin7 10086 brdom3 10215 iunfo 10226 gch3 10363 lbfzo0 13355 gcdcllem3 16136 1nprm 16312 cygctb 19408 expmhm 20579 expghm 20609 opsrtoslem2 21173 mat1dimelbas 21528 basdif0 22011 txdis1cn 22694 trfil2 22946 txflf 23065 clsnsg 23169 tgpconncomp 23172 perfdvf 24972 wilthlem3 26124 mptelee 27166 iscplgr 27685 rgrprcx 27862 blocnilem 29067 h1de2i 29816 nmop0 30249 nmfn0 30250 lnopconi 30297 lnfnconi 30318 stcltr2i 30538 funcnvmpt 30906 1stpreima 30941 2ndpreima 30942 suppss3 30961 fmla0 33244 fmlasuc0 33246 elmrsubrn 33382 dftr6 33624 br6 33630 dford5reg 33664 ttrclresv 33703 naddcllem 33758 noeta2 33906 etasslt2 33935 made0 33984 txpss3v 34107 brtxp 34109 brpprod 34114 brsset 34118 dfon3 34121 brtxpsd 34123 brtxpsd2 34124 dffun10 34143 elfuns 34144 funpartlem 34171 fullfunfv 34176 dfrdg4 34180 dfint3 34181 brub 34183 hfext 34412 neibastop2lem 34476 bj-equsexval 34768 bj-elid3 35265 finxp0 35489 finxp1o 35490 brvdif 36327 xrnss3v 36429 ntrneiel2 41585 ntrneik4w 41599 ismnushort 41808 funressnvmo 44426 dfdfat2 44507 |
Copyright terms: Public domain | W3C validator |