![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version |
Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
Ref | Expression |
---|---|
mpbiran.1 | ⊢ 𝜓 |
mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbiran | ⊢ (𝜑 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpbiran2 709 mpbir2an 710 pm5.63 1020 equsexALT 2427 velcomp 3991 ddif 4164 dfun2 4289 dfin2 4290 0pss 4470 pssv 4472 disj4 4482 pwpwab 5126 zfpair 5439 opabn0 5572 relop 5875 ssrnres 6209 funopab 6613 funcnv2 6646 fnres 6707 dffv2 7017 idref 7180 rnoprab 7554 suppssr 8236 frrlem9 8335 brwitnlem 8563 omeu 8641 naddcllem 8732 elixp 8962 1sdomOLD 9312 dfsup2 9513 card2inf 9624 harndom 9631 dford2 9689 cantnfp1lem3 9749 cantnfp1 9750 cantnflem1 9758 ttrclresv 9786 tz9.12lem3 9858 djulf1o 9981 djurf1o 9982 dfac4 10191 dfac12a 10218 cflem 10314 cflemOLD 10315 cfsmolem 10339 dffin7-2 10467 dfacfin7 10468 brdom3 10597 iunfo 10608 gch3 10745 lbfzo0 13756 gcdcllem3 16547 1nprm 16726 cygctb 19934 expmhm 21477 expghm 21509 opsrtoslem2 22103 mat1dimelbas 22498 basdif0 22981 txdis1cn 23664 trfil2 23916 txflf 24035 clsnsg 24139 tgpconncomp 24142 perfdvf 25958 wilthlem3 27131 noeta2 27847 etasslt2 27877 made0 27930 noseqind 28316 mptelee 28928 iscplgr 29450 rgrprcx 29628 blocnilem 30836 h1de2i 31585 nmop0 32018 nmfn0 32019 lnopconi 32066 lnfnconi 32087 stcltr2i 32307 funcnvmpt 32685 1stpreima 32718 2ndpreima 32719 suppss3 32738 fmla0 35350 fmlasuc0 35352 elmrsubrn 35488 dftr6 35713 br6 35719 dford5reg 35746 txpss3v 35842 brtxp 35844 brpprod 35849 brsset 35853 dfon3 35856 brtxpsd 35858 brtxpsd2 35859 dffun10 35878 elfuns 35879 funpartlem 35906 fullfunfv 35911 dfrdg4 35915 dfint3 35916 brub 35918 hfext 36147 neibastop2lem 36326 bj-equsexval 36626 bj-elid3 37133 finxp0 37357 finxp1o 37358 brvdif 38217 xrnss3v 38328 ntrneiel2 44048 ntrneik4w 44062 ismnushort 44270 funressnvmo 46960 dfdfat2 47043 |
Copyright terms: Public domain | W3C validator |