| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran.1 | ⊢ 𝜓 |
| mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
| 3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2 710 mpbir2an 711 pm5.63 1021 equsexALT 2418 velcomp 3915 ddif 4089 dfun2 4218 dfin2 4219 0pss 4395 pssv 4397 disj4 4407 pwpwab 5049 zfpair 5357 opabn0 5491 relop 5788 ssrnres 6122 funopab 6512 funcnv2 6545 fnres 6604 dffv2 6912 idref 7074 rnoprab 7446 suppssr 8120 frrlem9 8219 brwitnlem 8417 omeu 8495 naddcllem 8586 elixp 8823 dfsup2 9323 card2inf 9436 harndom 9443 dford2 9505 cantnfp1lem3 9565 cantnfp1 9566 cantnflem1 9574 ttrclresv 9602 tz9.12lem3 9674 djulf1o 9797 djurf1o 9798 dfac4 10005 dfac12a 10032 cflem 10128 cflemOLD 10129 cfsmolem 10153 dffin7-2 10281 dfacfin7 10282 brdom3 10411 iunfo 10422 gch3 10559 lbfzo0 13591 fzo1lb 13605 1elfzo1 13606 gcdcllem3 16404 1nprm 16582 cygctb 19797 expmhm 21366 expghm 21405 opsrtoslem2 21984 mat1dimelbas 22379 basdif0 22861 txdis1cn 23543 trfil2 23795 txflf 23914 clsnsg 24018 tgpconncomp 24021 perfdvf 25824 wilthlem3 27000 noeta2 27717 ssltsnb 27725 etasslt2 27748 made0 27811 bdayon 28202 noseqind 28215 zsoring 28325 mptelee 28866 iscplgr 29386 rgrprcx 29564 blocnilem 30774 h1de2i 31523 nmop0 31956 nmfn0 31957 lnopconi 32004 lnfnconi 32025 stcltr2i 32245 funcnvmpt 32639 1stpreima 32678 2ndpreima 32679 suppss3 32696 onvf1od 35119 fmla0 35394 fmlasuc0 35396 elmrsubrn 35532 dftr6 35763 br6 35769 dford5reg 35795 txpss3v 35891 brtxp 35893 brpprod 35898 brsset 35902 dfon3 35905 brtxpsd 35907 brtxpsd2 35908 dffun10 35927 elfuns 35928 funpartlem 35955 fullfunfv 35960 dfrdg4 35964 dfint3 35965 brub 35967 hfext 36196 neibastop2lem 36373 bj-equsexval 36673 bj-elid3 37180 finxp0 37404 finxp1o 37405 brvdif 38275 xrnss3v 38379 ntrneiel2 44098 ntrneik4w 44112 ismnushort 44313 permaxpow 45021 funressnvmo 47055 dfdfat2 47138 |
| Copyright terms: Public domain | W3C validator |