| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran.1 | ⊢ 𝜓 |
| mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
| 3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2 710 mpbir2an 711 pm5.63 1021 equsexALT 2423 velcomp 3941 ddif 4116 dfun2 4245 dfin2 4246 0pss 4422 pssv 4424 disj4 4434 pwpwab 5079 zfpair 5391 opabn0 5528 relop 5830 ssrnres 6167 funopab 6570 funcnv2 6603 fnres 6664 dffv2 6973 idref 7135 rnoprab 7510 suppssr 8192 frrlem9 8291 brwitnlem 8517 omeu 8595 naddcllem 8686 elixp 8916 1sdomOLD 9255 dfsup2 9454 card2inf 9567 harndom 9574 dford2 9632 cantnfp1lem3 9692 cantnfp1 9693 cantnflem1 9701 ttrclresv 9729 tz9.12lem3 9801 djulf1o 9924 djurf1o 9925 dfac4 10134 dfac12a 10161 cflem 10257 cflemOLD 10258 cfsmolem 10282 dffin7-2 10410 dfacfin7 10411 brdom3 10540 iunfo 10551 gch3 10688 lbfzo0 13714 fzo1lb 13728 gcdcllem3 16518 1nprm 16696 cygctb 19871 expmhm 21402 expghm 21434 opsrtoslem2 22012 mat1dimelbas 22407 basdif0 22889 txdis1cn 23571 trfil2 23823 txflf 23942 clsnsg 24046 tgpconncomp 24049 perfdvf 25854 wilthlem3 27030 noeta2 27746 etasslt2 27776 made0 27829 noseqind 28215 mptelee 28820 iscplgr 29340 rgrprcx 29518 blocnilem 30731 h1de2i 31480 nmop0 31913 nmfn0 31914 lnopconi 31961 lnfnconi 31982 stcltr2i 32202 funcnvmpt 32591 1stpreima 32630 2ndpreima 32631 suppss3 32647 fmla0 35350 fmlasuc0 35352 elmrsubrn 35488 dftr6 35714 br6 35720 dford5reg 35746 txpss3v 35842 brtxp 35844 brpprod 35849 brsset 35853 dfon3 35856 brtxpsd 35858 brtxpsd2 35859 dffun10 35878 elfuns 35879 funpartlem 35906 fullfunfv 35911 dfrdg4 35915 dfint3 35916 brub 35918 hfext 36147 neibastop2lem 36324 bj-equsexval 36624 bj-elid3 37131 finxp0 37355 finxp1o 37356 brvdif 38225 xrnss3v 38336 ntrneiel2 44057 ntrneik4w 44071 ismnushort 44273 permaxpow 44982 funressnvmo 47022 dfdfat2 47105 |
| Copyright terms: Public domain | W3C validator |