| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran.1 | ⊢ 𝜓 |
| mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
| 3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2 710 mpbir2an 711 pm5.63 1021 equsexALT 2421 velcomp 3914 ddif 4092 dfun2 4221 dfin2 4222 0pss 4398 pssv 4400 disj4 4410 pwpwab 5055 zfpair 5363 opabn0 5498 relop 5797 ssrnres 6133 funopab 6524 funcnv2 6557 fnres 6616 dffv2 6926 idref 7088 rnoprab 7460 suppssr 8134 frrlem9 8233 brwitnlem 8431 omeu 8509 naddcllem 8600 elixp 8837 dfsup2 9338 card2inf 9451 harndom 9458 dford2 9520 cantnfp1lem3 9580 cantnfp1 9581 cantnflem1 9589 ttrclresv 9617 tz9.12lem3 9692 djulf1o 9815 djurf1o 9816 dfac4 10023 dfac12a 10050 cflem 10146 cflemOLD 10147 cfsmolem 10171 dffin7-2 10299 dfacfin7 10300 brdom3 10429 iunfo 10440 gch3 10577 lbfzo0 13609 fzo1lb 13623 1elfzo1 13624 gcdcllem3 16422 1nprm 16600 cygctb 19814 expmhm 21383 expghm 21422 opsrtoslem2 22001 mat1dimelbas 22396 basdif0 22878 txdis1cn 23560 trfil2 23812 txflf 23931 clsnsg 24035 tgpconncomp 24038 perfdvf 25841 wilthlem3 27017 noeta2 27734 ssltsnb 27742 etasslt2 27765 made0 27828 bdayon 28219 noseqind 28232 zsoring 28342 mpteleeOLD 28884 iscplgr 29404 rgrprcx 29582 blocnilem 30795 h1de2i 31544 nmop0 31977 nmfn0 31978 lnopconi 32025 lnfnconi 32046 stcltr2i 32266 funcnvmpt 32660 1stpreima 32699 2ndpreima 32700 suppss3 32717 onvf1od 35162 fmla0 35437 fmlasuc0 35439 elmrsubrn 35575 dftr6 35806 br6 35812 dford5reg 35835 txpss3v 35931 brtxp 35933 brpprod 35938 brsset 35942 dfon3 35945 brtxpsd 35947 brtxpsd2 35948 dffun10 35967 elfuns 35968 funpartlem 35997 fullfunfv 36002 dfrdg4 36006 dfint3 36007 brub 36009 hfext 36238 neibastop2lem 36415 bj-equsexval 36715 bj-elid3 37222 finxp0 37446 finxp1o 37447 brvdif 38308 xrnss3v 38415 ntrneiel2 44193 ntrneik4w 44207 ismnushort 44408 permaxpow 45116 funressnvmo 47159 dfdfat2 47242 |
| Copyright terms: Public domain | W3C validator |