| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran.1 | ⊢ 𝜓 |
| mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
| 3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2 710 mpbir2an 711 pm5.63 1021 equsexALT 2417 velcomp 3920 ddif 4094 dfun2 4223 dfin2 4224 0pss 4400 pssv 4402 disj4 4412 pwpwab 5055 zfpair 5363 opabn0 5500 relop 5797 ssrnres 6131 funopab 6521 funcnv2 6554 fnres 6613 dffv2 6922 idref 7084 rnoprab 7458 suppssr 8135 frrlem9 8234 brwitnlem 8432 omeu 8510 naddcllem 8601 elixp 8838 dfsup2 9353 card2inf 9466 harndom 9473 dford2 9535 cantnfp1lem3 9595 cantnfp1 9596 cantnflem1 9604 ttrclresv 9632 tz9.12lem3 9704 djulf1o 9827 djurf1o 9828 dfac4 10035 dfac12a 10062 cflem 10158 cflemOLD 10159 cfsmolem 10183 dffin7-2 10311 dfacfin7 10312 brdom3 10441 iunfo 10452 gch3 10589 lbfzo0 13620 fzo1lb 13634 1elfzo1 13635 gcdcllem3 16430 1nprm 16608 cygctb 19789 expmhm 21361 expghm 21400 opsrtoslem2 21979 mat1dimelbas 22374 basdif0 22856 txdis1cn 23538 trfil2 23790 txflf 23909 clsnsg 24013 tgpconncomp 24016 perfdvf 25820 wilthlem3 26996 noeta2 27713 etasslt2 27743 made0 27805 bdayon 28196 noseqind 28209 zsoring 28319 mptelee 28858 iscplgr 29378 rgrprcx 29556 blocnilem 30766 h1de2i 31515 nmop0 31948 nmfn0 31949 lnopconi 31996 lnfnconi 32017 stcltr2i 32237 funcnvmpt 32624 1stpreima 32663 2ndpreima 32664 suppss3 32680 onvf1od 35079 fmla0 35354 fmlasuc0 35356 elmrsubrn 35492 dftr6 35723 br6 35729 dford5reg 35755 txpss3v 35851 brtxp 35853 brpprod 35858 brsset 35862 dfon3 35865 brtxpsd 35867 brtxpsd2 35868 dffun10 35887 elfuns 35888 funpartlem 35915 fullfunfv 35920 dfrdg4 35924 dfint3 35925 brub 35927 hfext 36156 neibastop2lem 36333 bj-equsexval 36633 bj-elid3 37140 finxp0 37364 finxp1o 37365 brvdif 38235 xrnss3v 38339 ntrneiel2 44059 ntrneik4w 44073 ismnushort 44274 permaxpow 44983 funressnvmo 47030 dfdfat2 47113 |
| Copyright terms: Public domain | W3C validator |