| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbiran | Structured version Visualization version GIF version | ||
| Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996.) |
| Ref | Expression |
|---|---|
| mpbiran.1 | ⊢ 𝜓 |
| mpbiran.2 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbiran | ⊢ (𝜑 ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbiran.2 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | mpbiran.1 | . . 3 ⊢ 𝜓 | |
| 3 | 2 | biantrur 530 | . 2 ⊢ (𝜒 ↔ (𝜓 ∧ 𝜒)) |
| 4 | 1, 3 | bitr4i 278 | 1 ⊢ (𝜑 ↔ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpbiran2 710 mpbir2an 711 pm5.63 1021 equsexALT 2418 velcomp 3932 ddif 4107 dfun2 4236 dfin2 4237 0pss 4413 pssv 4415 disj4 4425 pwpwab 5070 zfpair 5379 opabn0 5516 relop 5817 ssrnres 6154 funopab 6554 funcnv2 6587 fnres 6648 dffv2 6959 idref 7121 rnoprab 7497 suppssr 8177 frrlem9 8276 brwitnlem 8474 omeu 8552 naddcllem 8643 elixp 8880 1sdomOLD 9203 dfsup2 9402 card2inf 9515 harndom 9522 dford2 9580 cantnfp1lem3 9640 cantnfp1 9641 cantnflem1 9649 ttrclresv 9677 tz9.12lem3 9749 djulf1o 9872 djurf1o 9873 dfac4 10082 dfac12a 10109 cflem 10205 cflemOLD 10206 cfsmolem 10230 dffin7-2 10358 dfacfin7 10359 brdom3 10488 iunfo 10499 gch3 10636 lbfzo0 13667 fzo1lb 13681 1elfzo1 13682 gcdcllem3 16478 1nprm 16656 cygctb 19829 expmhm 21360 expghm 21392 opsrtoslem2 21970 mat1dimelbas 22365 basdif0 22847 txdis1cn 23529 trfil2 23781 txflf 23900 clsnsg 24004 tgpconncomp 24007 perfdvf 25811 wilthlem3 26987 noeta2 27703 etasslt2 27733 made0 27792 bdayon 28180 noseqind 28193 mptelee 28829 iscplgr 29349 rgrprcx 29527 blocnilem 30740 h1de2i 31489 nmop0 31922 nmfn0 31923 lnopconi 31970 lnfnconi 31991 stcltr2i 32211 funcnvmpt 32598 1stpreima 32637 2ndpreima 32638 suppss3 32654 onvf1od 35101 fmla0 35376 fmlasuc0 35378 elmrsubrn 35514 dftr6 35745 br6 35751 dford5reg 35777 txpss3v 35873 brtxp 35875 brpprod 35880 brsset 35884 dfon3 35887 brtxpsd 35889 brtxpsd2 35890 dffun10 35909 elfuns 35910 funpartlem 35937 fullfunfv 35942 dfrdg4 35946 dfint3 35947 brub 35949 hfext 36178 neibastop2lem 36355 bj-equsexval 36655 bj-elid3 37162 finxp0 37386 finxp1o 37387 brvdif 38257 xrnss3v 38361 ntrneiel2 44082 ntrneik4w 44096 ismnushort 44297 permaxpow 45006 funressnvmo 47050 dfdfat2 47133 |
| Copyright terms: Public domain | W3C validator |