Step | Hyp | Ref
| Expression |
1 | | plydiv.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
2 | | dgrcl 24929 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) |
4 | 3 | nn0red 11995 |
. . . 4
⊢ (𝜑 → (deg‘𝐹) ∈
ℝ) |
5 | | plydiv.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
6 | | dgrcl 24929 |
. . . . . 6
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) |
8 | 7 | nn0red 11995 |
. . . 4
⊢ (𝜑 → (deg‘𝐺) ∈
ℝ) |
9 | 4, 8 | resubcld 11106 |
. . 3
⊢ (𝜑 → ((deg‘𝐹) − (deg‘𝐺)) ∈
ℝ) |
10 | | arch 11931 |
. . 3
⊢
(((deg‘𝐹)
− (deg‘𝐺))
∈ ℝ → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) |
11 | 9, 10 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) |
12 | | olc 865 |
. . . 4
⊢
(((deg‘𝐹)
− (deg‘𝐺)) <
𝑑 → (𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑)) |
13 | | eqeq1 2762 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓 = 0𝑝 ↔ 𝐹 =
0𝑝)) |
14 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹)) |
15 | 14 | oveq1d 7165 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝐹) − (deg‘𝐺))) |
16 | 15 | breq1d 5042 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)) |
17 | 13, 16 | orbi12d 916 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ↔ (𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑))) |
18 | | oveq1 7157 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = (𝐹 ∘f − (𝐺 ∘f ·
𝑞))) |
19 | | plydiv.r |
. . . . . . . . . 10
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) |
20 | 18, 19 | eqtr4di 2811 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 𝑅) |
21 | 20 | eqeq1d 2760 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
↔ 𝑅 =
0𝑝)) |
22 | 20 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) = (deg‘𝑅)) |
23 | 22 | breq1d 5042 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺))) |
24 | 21, 23 | orbi12d 916 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
25 | 24 | rexbidv 3221 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
26 | 17, 25 | imbi12d 348 |
. . . . 5
⊢ (𝑓 = 𝐹 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))))) |
27 | | nnnn0 11941 |
. . . . . . 7
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℕ0) |
28 | | breq2 5036 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 0)) |
29 | 28 | orbi2d 913 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) <
0))) |
30 | 29 | imbi1d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺))))) |
31 | 30 | ralbidv 3126 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺))))) |
32 | 31 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)))))) |
33 | | breq2 5036 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑑 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑)) |
34 | 33 | orbi2d 913 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑑 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑))) |
35 | 34 | imbi1d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑑 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
36 | 35 | ralbidv 3126 |
. . . . . . . . 9
⊢ (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
37 | 36 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
38 | | breq2 5036 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑑 + 1) → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))) |
39 | 38 | orbi2d 913 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑑 + 1) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)))) |
40 | 39 | imbi1d 345 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑑 + 1) → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
41 | 40 | ralbidv 3126 |
. . . . . . . . 9
⊢ (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
42 | 41 | imbi2d 344 |
. . . . . . . 8
⊢ (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
43 | | plydiv.pl |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
44 | 43 | adantlr 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
45 | | plydiv.tm |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
46 | 45 | adantlr 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
47 | | plydiv.rc |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
48 | 47 | adantlr 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
49 | | plydiv.m1 |
. . . . . . . . . . . 12
⊢ (𝜑 → -1 ∈ 𝑆) |
50 | 49 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ -1 ∈ 𝑆) |
51 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ 𝑓 ∈
(Poly‘𝑆)) |
52 | 5 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ 𝐺 ∈
(Poly‘𝑆)) |
53 | | plydiv.z |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ≠
0𝑝) |
54 | 53 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ 𝐺 ≠
0𝑝) |
55 | | eqid 2758 |
. . . . . . . . . . 11
⊢ (𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) = (𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) |
56 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ (𝑓 =
0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0)) |
57 | 44, 46, 48, 50, 51, 52, 54, 55, 56 | plydivlem3 24990 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺))) |
58 | 57 | expr 460 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)))) |
59 | 58 | ralrimiva 3113 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)))) |
60 | | eqeq1 2762 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑓 = 0𝑝 ↔ 𝑔 =
0𝑝)) |
61 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔)) |
62 | 61 | oveq1d 7165 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝑔) − (deg‘𝐺))) |
63 | 62 | breq1d 5042 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑)) |
64 | 60, 63 | orbi12d 916 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ↔ (𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑))) |
65 | | oveq1 7157 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → (𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = (𝑔 ∘f − (𝐺 ∘f ·
𝑞))) |
66 | 65 | eqeq1d 2760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → ((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
↔ (𝑔
∘f − (𝐺 ∘f · 𝑞)) =
0𝑝)) |
67 | 65 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) = (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑞)))) |
68 | 67 | breq1d 5042 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → ((deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑞))) <
(deg‘𝐺))) |
69 | 66, 68 | orbi12d 916 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) |
70 | 69 | rexbidv 3221 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) |
71 | 64, 70 | imbi12d 348 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
72 | 71 | cbvralvw 3361 |
. . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) |
73 | | simplll 774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝜑) |
74 | 73, 43 | sylan 583 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈
(Poly‘𝑆)) ∧
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
75 | 73, 45 | sylan 583 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈
(Poly‘𝑆)) ∧
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
76 | 73, 47 | sylan 583 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈
(Poly‘𝑆)) ∧
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
77 | 73, 49 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → -1 ∈ 𝑆) |
78 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝑓 ∈ (Poly‘𝑆)) |
79 | 73, 5 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝐺 ∈ (Poly‘𝑆)) |
80 | 73, 53 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝐺 ≠
0𝑝) |
81 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝑑 ∈ ℕ0) |
82 | | simprrr 781 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) |
83 | | simprrl 780 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝑓 ≠ 0𝑝) |
84 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∘f −
(𝐺 ∘f
· 𝑝)) = (𝑔 ∘f −
(𝐺 ∘f
· 𝑝)) |
85 | | oveq1 7157 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑧 → (𝑤↑𝑑) = (𝑧↑𝑑)) |
86 | 85 | oveq2d 7166 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤↑𝑑)) = ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧↑𝑑))) |
87 | 86 | cbvmptv 5135 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℂ ↦
((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤↑𝑑))) = (𝑧 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧↑𝑑))) |
88 | | simprl 770 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) |
89 | | oveq2 7158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑞 = 𝑝 → (𝐺 ∘f · 𝑞) = (𝐺 ∘f · 𝑝)) |
90 | 89 | oveq2d 7166 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = 𝑝 → (𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = (𝑔 ∘f − (𝐺 ∘f ·
𝑝))) |
91 | 90 | eqeq1d 2760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = 𝑝 → ((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
↔ (𝑔
∘f − (𝐺 ∘f · 𝑝)) =
0𝑝)) |
92 | 90 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = 𝑝 → (deg‘(𝑔 ∘f − (𝐺 ∘f ·
𝑞))) = (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑝)))) |
93 | 92 | breq1d 5042 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = 𝑝 → ((deg‘(𝑔 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑝))) <
(deg‘𝐺))) |
94 | 91, 93 | orbi12d 916 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 = 𝑝 → (((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) |
95 | 94 | cbvrexvw 3362 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑞 ∈
(Poly‘𝑆)((𝑔 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑔 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) |
96 | 95 | imbi2i 339 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) |
97 | 96 | ralbii 3097 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) |
98 | 88, 97 | sylib 221 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) |
99 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢
(coeff‘𝑓) =
(coeff‘𝑓) |
100 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢
(coeff‘𝐺) =
(coeff‘𝐺) |
101 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢
(deg‘𝑓) =
(deg‘𝑓) |
102 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢
(deg‘𝐺) =
(deg‘𝐺) |
103 | 74, 75, 76, 77, 78, 79, 80, 55, 81, 82, 83, 84, 87, 98, 99, 100, 101, 102 | plydivlem4 24991 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) |
104 | 103 | exp32 424 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
105 | 104 | ralrimdva 3118 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
106 | 72, 105 | syl5bi 245 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
107 | 106 | ancld 554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
108 | | dgrcl 24929 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ (Poly‘𝑆) → (deg‘𝑓) ∈
ℕ0) |
109 | 108 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈
ℕ0) |
110 | 109 | nn0zd 12124 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈
ℤ) |
111 | 5 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) |
112 | 111, 6 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈
ℕ0) |
113 | 112 | nn0zd 12124 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈
ℤ) |
114 | 110, 113 | zsubcld 12131 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈
ℤ) |
115 | | nn0z 12044 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℤ) |
116 | 115 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℤ) |
117 | | zleltp1 12072 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((deg‘𝑓)
− (deg‘𝐺))
∈ ℤ ∧ 𝑑
∈ ℤ) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))) |
118 | 114, 116,
117 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))) |
119 | 114 | zred 12126 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈
ℝ) |
120 | | nn0re 11943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℝ) |
121 | 120 | ad2antlr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℝ) |
122 | 119, 121 | leloed 10821 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) |
123 | 118, 122 | bitr3d 284 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) |
124 | 123 | orbi2d 913 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) ↔ (𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))) |
125 | | pm5.63 1017 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) |
126 | | df-ne 2952 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ≠ 0𝑝
↔ ¬ 𝑓 =
0𝑝) |
127 | 126 | anbi1i 626 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑) ↔ (¬ 𝑓 = 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) |
128 | 127 | orbi2i 910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 = 0𝑝 ∨
(𝑓 ≠
0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) |
129 | 125, 128 | bitr4i 281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑))) |
130 | 129 | orbi2i 910 |
. . . . . . . . . . . . . . . . . 18
⊢
((((deg‘𝑓)
− (deg‘𝐺)) <
𝑑 ∨ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑)))) |
131 | | or12 918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) |
132 | | or12 918 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑)))) |
133 | 130, 131,
132 | 3bitr4i 306 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)))) |
134 | | orass 919 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)))) |
135 | 133, 134 | bitr4i 281 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) |
136 | 124, 135 | bitrdi 290 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)))) |
137 | 136 | imbi1d 345 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
138 | | jaob 959 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
139 | 137, 138 | bitrdi 290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
140 | 139 | ralbidva 3125 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
141 | | r19.26 3101 |
. . . . . . . . . . . 12
⊢
(∀𝑓 ∈
(Poly‘𝑆)(((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
142 | 140, 141 | bitrdi 290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
143 | 107, 142 | sylibrd 262 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
144 | 143 | expcom 417 |
. . . . . . . . 9
⊢ (𝑑 ∈ ℕ0
→ (𝜑 →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
145 | 144 | a2d 29 |
. . . . . . . 8
⊢ (𝑑 ∈ ℕ0
→ ((𝜑 →
∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) |
146 | 32, 37, 42, 37, 59, 145 | nn0ind 12116 |
. . . . . . 7
⊢ (𝑑 ∈ ℕ0
→ (𝜑 →
∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
147 | 27, 146 | syl 17 |
. . . . . 6
⊢ (𝑑 ∈ ℕ → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) |
148 | 147 | impcom 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) |
149 | 1 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆)) |
150 | 26, 148, 149 | rspcdva 3543 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
151 | 12, 150 | syl5 34 |
. . 3
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
152 | 151 | rexlimdva 3208 |
. 2
⊢ (𝜑 → (∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) |
153 | 11, 152 | mpd 15 |
1
⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |