| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | plydiv.f | . . . . . 6
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 2 |  | dgrcl 26273 | . . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) | 
| 3 | 1, 2 | syl 17 | . . . . 5
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) | 
| 4 | 3 | nn0red 12590 | . . . 4
⊢ (𝜑 → (deg‘𝐹) ∈
ℝ) | 
| 5 |  | plydiv.g | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | 
| 6 |  | dgrcl 26273 | . . . . . 6
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) | 
| 7 | 5, 6 | syl 17 | . . . . 5
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) | 
| 8 | 7 | nn0red 12590 | . . . 4
⊢ (𝜑 → (deg‘𝐺) ∈
ℝ) | 
| 9 | 4, 8 | resubcld 11692 | . . 3
⊢ (𝜑 → ((deg‘𝐹) − (deg‘𝐺)) ∈
ℝ) | 
| 10 |  | arch 12525 | . . 3
⊢
(((deg‘𝐹)
− (deg‘𝐺))
∈ ℝ → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) | 
| 11 | 9, 10 | syl 17 | . 2
⊢ (𝜑 → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) | 
| 12 |  | olc 868 | . . . 4
⊢
(((deg‘𝐹)
− (deg‘𝐺)) <
𝑑 → (𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑)) | 
| 13 |  | eqeq1 2740 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓 = 0𝑝 ↔ 𝐹 =
0𝑝)) | 
| 14 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹)) | 
| 15 | 14 | oveq1d 7447 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝐹) − (deg‘𝐺))) | 
| 16 | 15 | breq1d 5152 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)) | 
| 17 | 13, 16 | orbi12d 918 | . . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ↔ (𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑))) | 
| 18 |  | oveq1 7439 | . . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = (𝐹 ∘f − (𝐺 ∘f ·
𝑞))) | 
| 19 |  | plydiv.r | . . . . . . . . . 10
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) | 
| 20 | 18, 19 | eqtr4di 2794 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 𝑅) | 
| 21 | 20 | eqeq1d 2738 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
↔ 𝑅 =
0𝑝)) | 
| 22 | 20 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) = (deg‘𝑅)) | 
| 23 | 22 | breq1d 5152 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺))) | 
| 24 | 21, 23 | orbi12d 918 | . . . . . . 7
⊢ (𝑓 = 𝐹 → (((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) | 
| 25 | 24 | rexbidv 3178 | . . . . . 6
⊢ (𝑓 = 𝐹 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) | 
| 26 | 17, 25 | imbi12d 344 | . . . . 5
⊢ (𝑓 = 𝐹 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))))) | 
| 27 |  | nnnn0 12535 | . . . . . . 7
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℕ0) | 
| 28 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑥 = 0 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 0)) | 
| 29 | 28 | orbi2d 915 | . . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) <
0))) | 
| 30 | 29 | imbi1d 341 | . . . . . . . . . 10
⊢ (𝑥 = 0 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺))))) | 
| 31 | 30 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑥 = 0 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺))))) | 
| 32 | 31 | imbi2d 340 | . . . . . . . 8
⊢ (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)))))) | 
| 33 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑑 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑)) | 
| 34 | 33 | orbi2d 915 | . . . . . . . . . . 11
⊢ (𝑥 = 𝑑 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑))) | 
| 35 | 34 | imbi1d 341 | . . . . . . . . . 10
⊢ (𝑥 = 𝑑 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 36 | 35 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 37 | 36 | imbi2d 340 | . . . . . . . 8
⊢ (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 38 |  | breq2 5146 | . . . . . . . . . . . 12
⊢ (𝑥 = (𝑑 + 1) → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))) | 
| 39 | 38 | orbi2d 915 | . . . . . . . . . . 11
⊢ (𝑥 = (𝑑 + 1) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)))) | 
| 40 | 39 | imbi1d 341 | . . . . . . . . . 10
⊢ (𝑥 = (𝑑 + 1) → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 41 | 40 | ralbidv 3177 | . . . . . . . . 9
⊢ (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 42 | 41 | imbi2d 340 | . . . . . . . 8
⊢ (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 43 |  | plydiv.pl | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 44 | 43 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 45 |  | plydiv.tm | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | 
| 46 | 45 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | 
| 47 |  | plydiv.rc | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) | 
| 48 | 47 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) | 
| 49 |  | plydiv.m1 | . . . . . . . . . . . 12
⊢ (𝜑 → -1 ∈ 𝑆) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ -1 ∈ 𝑆) | 
| 51 |  | simprl 770 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ 𝑓 ∈
(Poly‘𝑆)) | 
| 52 | 5 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ 𝐺 ∈
(Poly‘𝑆)) | 
| 53 |  | plydiv.z | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ≠
0𝑝) | 
| 54 | 53 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ 𝐺 ≠
0𝑝) | 
| 55 |  | eqid 2736 | . . . . . . . . . . 11
⊢ (𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) = (𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) | 
| 56 |  | simprr 772 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ (𝑓 =
0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0)) | 
| 57 | 44, 46, 48, 50, 51, 52, 54, 55, 56 | plydivlem3 26338 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)))
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺))) | 
| 58 | 57 | expr 456 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)))) | 
| 59 | 58 | ralrimiva 3145 | . . . . . . . 8
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 0)
→ ∃𝑞 ∈
(Poly‘𝑆)((𝑓 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)))) | 
| 60 |  | eqeq1 2740 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (𝑓 = 0𝑝 ↔ 𝑔 =
0𝑝)) | 
| 61 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔)) | 
| 62 | 61 | oveq1d 7447 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝑔) − (deg‘𝐺))) | 
| 63 | 62 | breq1d 5152 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑)) | 
| 64 | 60, 63 | orbi12d 918 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ↔ (𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑))) | 
| 65 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → (𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = (𝑔 ∘f − (𝐺 ∘f ·
𝑞))) | 
| 66 | 65 | eqeq1d 2738 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → ((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
↔ (𝑔
∘f − (𝐺 ∘f · 𝑞)) =
0𝑝)) | 
| 67 | 65 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = 𝑔 → (deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) = (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑞)))) | 
| 68 | 67 | breq1d 5152 | . . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝑔 → ((deg‘(𝑓 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑞))) <
(deg‘𝐺))) | 
| 69 | 66, 68 | orbi12d 918 | . . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑔 → (((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) | 
| 70 | 69 | rexbidv 3178 | . . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) | 
| 71 | 64, 70 | imbi12d 344 | . . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 72 | 71 | cbvralvw 3236 | . . . . . . . . . . . . 13
⊢
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) | 
| 73 |  | simplll 774 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝜑) | 
| 74 | 73, 43 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈
(Poly‘𝑆)) ∧
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 75 | 73, 45 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈
(Poly‘𝑆)) ∧
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) | 
| 76 | 73, 47 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈
(Poly‘𝑆)) ∧
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) | 
| 77 | 73, 49 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → -1 ∈ 𝑆) | 
| 78 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝑓 ∈ (Poly‘𝑆)) | 
| 79 | 73, 5 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝐺 ∈ (Poly‘𝑆)) | 
| 80 | 73, 53 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝐺 ≠
0𝑝) | 
| 81 |  | simpllr 775 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝑑 ∈ ℕ0) | 
| 82 |  | simprrr 781 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) | 
| 83 |  | simprrl 780 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → 𝑓 ≠ 0𝑝) | 
| 84 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢ (𝑔 ∘f −
(𝐺 ∘f
· 𝑝)) = (𝑔 ∘f −
(𝐺 ∘f
· 𝑝)) | 
| 85 |  | oveq1 7439 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑧 → (𝑤↑𝑑) = (𝑧↑𝑑)) | 
| 86 | 85 | oveq2d 7448 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤↑𝑑)) = ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧↑𝑑))) | 
| 87 | 86 | cbvmptv 5254 | . . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ℂ ↦
((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤↑𝑑))) = (𝑧 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧↑𝑑))) | 
| 88 |  | simprl 770 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) | 
| 89 |  | oveq2 7440 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑞 = 𝑝 → (𝐺 ∘f · 𝑞) = (𝐺 ∘f · 𝑝)) | 
| 90 | 89 | oveq2d 7448 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = 𝑝 → (𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = (𝑔 ∘f − (𝐺 ∘f ·
𝑝))) | 
| 91 | 90 | eqeq1d 2738 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = 𝑝 → ((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
↔ (𝑔
∘f − (𝐺 ∘f · 𝑝)) =
0𝑝)) | 
| 92 | 90 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = 𝑝 → (deg‘(𝑔 ∘f − (𝐺 ∘f ·
𝑞))) = (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑝)))) | 
| 93 | 92 | breq1d 5152 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞 = 𝑝 → ((deg‘(𝑔 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔 ∘f −
(𝐺 ∘f
· 𝑝))) <
(deg‘𝐺))) | 
| 94 | 91, 93 | orbi12d 918 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑞 = 𝑝 → (((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) | 
| 95 | 94 | cbvrexvw 3237 | . . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑞 ∈
(Poly‘𝑆)((𝑔 ∘f −
(𝐺 ∘f
· 𝑞)) =
0𝑝 ∨ (deg‘(𝑔 ∘f − (𝐺 ∘f ·
𝑞))) < (deg‘𝐺)) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺))) | 
| 96 | 95 | imbi2i 336 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) | 
| 97 | 96 | ralbii 3092 | . . . . . . . . . . . . . . . . 17
⊢
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) | 
| 98 | 88, 97 | sylib 218 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑝)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑝))) < (deg‘𝐺)))) | 
| 99 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢
(coeff‘𝑓) =
(coeff‘𝑓) | 
| 100 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢
(coeff‘𝐺) =
(coeff‘𝐺) | 
| 101 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢
(deg‘𝑓) =
(deg‘𝑓) | 
| 102 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢
(deg‘𝐺) =
(deg‘𝐺) | 
| 103 | 74, 75, 76, 77, 78, 79, 80, 55, 81, 82, 83, 84, 87, 98, 99, 100, 101, 102 | plydivlem4 26339 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) | 
| 104 | 103 | exp32 420 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 105 | 104 | ralrimdva 3153 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑔 ∈
(Poly‘𝑆)((𝑔 = 0𝑝 ∨
((deg‘𝑔) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑔
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 106 | 72, 105 | biimtrid 242 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 107 | 106 | ancld 550 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 108 |  | dgrcl 26273 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ (Poly‘𝑆) → (deg‘𝑓) ∈
ℕ0) | 
| 109 | 108 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈
ℕ0) | 
| 110 | 109 | nn0zd 12641 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈
ℤ) | 
| 111 | 5 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆)) | 
| 112 | 111, 6 | syl 17 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈
ℕ0) | 
| 113 | 112 | nn0zd 12641 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈
ℤ) | 
| 114 | 110, 113 | zsubcld 12729 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈
ℤ) | 
| 115 |  | nn0z 12640 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℤ) | 
| 116 | 115 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℤ) | 
| 117 |  | zleltp1 12670 | . . . . . . . . . . . . . . . . . . 19
⊢
((((deg‘𝑓)
− (deg‘𝐺))
∈ ℤ ∧ 𝑑
∈ ℤ) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))) | 
| 118 | 114, 116,
117 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))) | 
| 119 | 114 | zred 12724 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈
ℝ) | 
| 120 |  | nn0re 12537 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℝ) | 
| 121 | 120 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℝ) | 
| 122 | 119, 121 | leloed 11405 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) | 
| 123 | 118, 122 | bitr3d 281 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) | 
| 124 | 123 | orbi2d 915 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) ↔ (𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))) | 
| 125 |  | pm5.63 1021 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) | 
| 126 |  | df-ne 2940 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ≠ 0𝑝
↔ ¬ 𝑓 =
0𝑝) | 
| 127 | 126 | anbi1i 624 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑) ↔ (¬ 𝑓 = 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) | 
| 128 | 127 | orbi2i 912 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 = 0𝑝 ∨
(𝑓 ≠
0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) | 
| 129 | 125, 128 | bitr4i 278 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑))) | 
| 130 | 129 | orbi2i 912 | . . . . . . . . . . . . . . . . . 18
⊢
((((deg‘𝑓)
− (deg‘𝐺)) <
𝑑 ∨ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑)))) | 
| 131 |  | or12 920 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) | 
| 132 |  | or12 920 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝
∧ ((deg‘𝑓)
− (deg‘𝐺)) =
𝑑)))) | 
| 133 | 130, 131,
132 | 3bitr4i 303 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)))) | 
| 134 |  | orass 921 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)))) | 
| 135 | 133, 134 | bitr4i 278 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 = 0𝑝 ∨
(((deg‘𝑓) −
(deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑))) | 
| 136 | 124, 135 | bitrdi 287 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) ↔ ((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)))) | 
| 137 | 136 | imbi1d 341 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 138 |  | jaob 963 | . . . . . . . . . . . . . 14
⊢ ((((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 139 | 137, 138 | bitrdi 287 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 140 | 139 | ralbidva 3175 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 141 |  | r19.26 3110 | . . . . . . . . . . . 12
⊢
(∀𝑓 ∈
(Poly‘𝑆)(((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 142 | 140, 141 | bitrdi 287 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧
((deg‘𝑓) −
(deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 143 | 107, 142 | sylibrd 259 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 144 | 143 | expcom 413 | . . . . . . . . 9
⊢ (𝑑 ∈ ℕ0
→ (𝜑 →
(∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 145 | 144 | a2d 29 | . . . . . . . 8
⊢ (𝑑 ∈ ℕ0
→ ((𝜑 →
∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))))) | 
| 146 | 32, 37, 42, 37, 59, 145 | nn0ind 12715 | . . . . . . 7
⊢ (𝑑 ∈ ℕ0
→ (𝜑 →
∀𝑓 ∈
(Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 147 | 27, 146 | syl 17 | . . . . . 6
⊢ (𝑑 ∈ ℕ → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺))))) | 
| 148 | 147 | impcom 407 | . . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨
((deg‘𝑓) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓 ∘f − (𝐺 ∘f ·
𝑞)) = 0𝑝
∨ (deg‘(𝑓
∘f − (𝐺 ∘f · 𝑞))) < (deg‘𝐺)))) | 
| 149 | 1 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆)) | 
| 150 | 26, 148, 149 | rspcdva 3622 | . . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → ((𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) | 
| 151 | 12, 150 | syl5 34 | . . 3
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ) → (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) | 
| 152 | 151 | rexlimdva 3154 | . 2
⊢ (𝜑 → (∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)))) | 
| 153 | 11, 152 | mpd 15 | 1
⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |