MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivex Structured version   Visualization version   GIF version

Theorem plydivex 24357
Description: Lemma for plydivalg 24359. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
Assertion
Ref Expression
plydivex (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivex
Dummy variables 𝑧 𝑓 𝑑 𝑝 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrcl 24294 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
43nn0red 11603 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
5 plydiv.g . . . . . 6 (𝜑𝐺 ∈ (Poly‘𝑆))
6 dgrcl 24294 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝜑 → (deg‘𝐺) ∈ ℕ0)
87nn0red 11603 . . . 4 (𝜑 → (deg‘𝐺) ∈ ℝ)
94, 8resubcld 10716 . . 3 (𝜑 → ((deg‘𝐹) − (deg‘𝐺)) ∈ ℝ)
10 arch 11539 . . 3 (((deg‘𝐹) − (deg‘𝐺)) ∈ ℝ → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)
119, 10syl 17 . 2 (𝜑 → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)
12 olc 894 . . . 4 (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑))
13 eqeq1 2769 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 = 0𝑝𝐹 = 0𝑝))
14 fveq2 6379 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
1514oveq1d 6861 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝐹) − (deg‘𝐺)))
1615breq1d 4821 . . . . . . 7 (𝑓 = 𝐹 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑))
1713, 16orbi12d 942 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)))
18 oveq1 6853 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑓 − (𝐺𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞)))
19 plydiv.r . . . . . . . . . 10 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
2018, 19syl6eqr 2817 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 𝑅)
2120eqeq1d 2767 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝𝑅 = 0𝑝))
2220fveq2d 6383 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) = (deg‘𝑅))
2322breq1d 4821 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
2421, 23orbi12d 942 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2524rexbidv 3199 . . . . . 6 (𝑓 = 𝐹 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2617, 25imbi12d 335 . . . . 5 (𝑓 = 𝐹 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ((𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))))
27 nnnn0 11550 . . . . . . 7 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
28 breq2 4815 . . . . . . . . . . . 12 (𝑥 = 0 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 0))
2928orbi2d 939 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0)))
3029imbi1d 332 . . . . . . . . . 10 (𝑥 = 0 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
3130ralbidv 3133 . . . . . . . . 9 (𝑥 = 0 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
3231imbi2d 331 . . . . . . . 8 (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
33 breq2 4815 . . . . . . . . . . . 12 (𝑥 = 𝑑 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑))
3433orbi2d 939 . . . . . . . . . . 11 (𝑥 = 𝑑 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑)))
3534imbi1d 332 . . . . . . . . . 10 (𝑥 = 𝑑 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
3635ralbidv 3133 . . . . . . . . 9 (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
3736imbi2d 331 . . . . . . . 8 (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
38 breq2 4815 . . . . . . . . . . . 12 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
3938orbi2d 939 . . . . . . . . . . 11 (𝑥 = (𝑑 + 1) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))))
4039imbi1d 332 . . . . . . . . . 10 (𝑥 = (𝑑 + 1) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
4140ralbidv 3133 . . . . . . . . 9 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
4241imbi2d 331 . . . . . . . 8 (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
43 plydiv.pl . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4443adantlr 706 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
45 plydiv.tm . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
4645adantlr 706 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
47 plydiv.rc . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4847adantlr 706 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
49 plydiv.m1 . . . . . . . . . . . 12 (𝜑 → -1 ∈ 𝑆)
5049adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → -1 ∈ 𝑆)
51 simprl 787 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝑓 ∈ (Poly‘𝑆))
525adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝐺 ∈ (Poly‘𝑆))
53 plydiv.z . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0𝑝)
5453adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝐺 ≠ 0𝑝)
55 eqid 2765 . . . . . . . . . . 11 (𝑓𝑓 − (𝐺𝑓 · 𝑞)) = (𝑓𝑓 − (𝐺𝑓 · 𝑞))
56 simprr 789 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))
5744, 46, 48, 50, 51, 52, 54, 55, 56plydivlem3 24355 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
5857expr 448 . . . . . . . . 9 ((𝜑𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
5958ralrimiva 3113 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
60 eqeq1 2769 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓 = 0𝑝𝑔 = 0𝑝))
61 fveq2 6379 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6261oveq1d 6861 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝑔) − (deg‘𝐺)))
6362breq1d 4821 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑))
6460, 63orbi12d 942 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ↔ (𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑)))
65 oveq1 6853 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (𝑓𝑓 − (𝐺𝑓 · 𝑞)) = (𝑔𝑓 − (𝐺𝑓 · 𝑞)))
6665eqeq1d 2767 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ↔ (𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝))
6765fveq2d 6383 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) = (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))))
6867breq1d 4821 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
6966, 68orbi12d 942 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
7069rexbidv 3199 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
7164, 70imbi12d 335 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
7271cbvralv 3319 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
73 simplll 791 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝜑)
7473, 43sylan 575 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
7573, 45sylan 575 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
7673, 47sylan 575 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
7773, 49syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → -1 ∈ 𝑆)
78 simplr 785 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑓 ∈ (Poly‘𝑆))
7973, 5syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝐺 ∈ (Poly‘𝑆))
8073, 53syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝐺 ≠ 0𝑝)
81 simpllr 793 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑑 ∈ ℕ0)
82 simprrr 800 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)
83 simprrl 799 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑓 ≠ 0𝑝)
84 eqid 2765 . . . . . . . . . . . . . . . 16 (𝑔𝑓 − (𝐺𝑓 · 𝑝)) = (𝑔𝑓 − (𝐺𝑓 · 𝑝))
85 oveq1 6853 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤𝑑) = (𝑧𝑑))
8685oveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤𝑑)) = ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧𝑑)))
8786cbvmptv 4911 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤𝑑))) = (𝑧 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧𝑑)))
88 simprl 787 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
89 oveq2 6854 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = 𝑝 → (𝐺𝑓 · 𝑞) = (𝐺𝑓 · 𝑝))
9089oveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → (𝑔𝑓 − (𝐺𝑓 · 𝑞)) = (𝑔𝑓 − (𝐺𝑓 · 𝑝)))
9190eqeq1d 2767 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = 𝑝 → ((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ↔ (𝑔𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝))
9290fveq2d 6383 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) = (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑝))))
9392breq1d 4821 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = 𝑝 → ((deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))
9491, 93orbi12d 942 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑝 → (((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))))
9594cbvrexv 3320 . . . . . . . . . . . . . . . . . . 19 (∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺)))
9695imbi2i 327 . . . . . . . . . . . . . . . . . 18 (((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))))
9796ralbii 3127 . . . . . . . . . . . . . . . . 17 (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))))
9888, 97sylib 209 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑝))) < (deg‘𝐺))))
99 eqid 2765 . . . . . . . . . . . . . . . 16 (coeff‘𝑓) = (coeff‘𝑓)
100 eqid 2765 . . . . . . . . . . . . . . . 16 (coeff‘𝐺) = (coeff‘𝐺)
101 eqid 2765 . . . . . . . . . . . . . . . 16 (deg‘𝑓) = (deg‘𝑓)
102 eqid 2765 . . . . . . . . . . . . . . . 16 (deg‘𝐺) = (deg‘𝐺)
10374, 75, 76, 77, 78, 79, 80, 55, 81, 82, 83, 84, 87, 98, 99, 100, 101, 102plydivlem4 24356 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
104103exp32 411 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
105104ralrimdva 3116 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ0) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
10672, 105syl5bi 233 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
107106ancld 546 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
108 dgrcl 24294 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (Poly‘𝑆) → (deg‘𝑓) ∈ ℕ0)
109108adantl 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈ ℕ0)
110109nn0zd 11732 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈ ℤ)
1115ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
112111, 6syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈ ℕ0)
113112nn0zd 11732 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈ ℤ)
114110, 113zsubcld 11739 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈ ℤ)
115 nn0z 11652 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
116115ad2antlr 718 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℤ)
117 zleltp1 11680 . . . . . . . . . . . . . . . . . . 19 ((((deg‘𝑓) − (deg‘𝐺)) ∈ ℤ ∧ 𝑑 ∈ ℤ) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
118114, 116, 117syl2anc 579 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
119114zred 11734 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈ ℝ)
120 nn0re 11552 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
121120ad2antlr 718 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℝ)
122119, 121leloed 10438 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
123118, 122bitr3d 272 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
124123orbi2d 939 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
125 pm5.63 1043 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
126 df-ne 2938 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ≠ 0𝑝 ↔ ¬ 𝑓 = 0𝑝)
127126anbi1i 617 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))
128127orbi2i 936 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
129125, 128bitr4i 269 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
130129orbi2i 936 . . . . . . . . . . . . . . . . . 18 ((((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
131 or12 944 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
132 or12 944 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
133130, 131, 1323bitr4i 294 . . . . . . . . . . . . . . . . 17 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
134 orass 945 . . . . . . . . . . . . . . . . 17 (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
135133, 134bitr4i 269 . . . . . . . . . . . . . . . 16 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
136124, 135syl6bb 278 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
137136imbi1d 332 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
138 jaob 984 . . . . . . . . . . . . . 14 ((((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
139137, 138syl6bb 278 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
140139ralbidva 3132 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
141 r19.26 3211 . . . . . . . . . . . 12 (∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
142140, 141syl6bb 278 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
143107, 142sylibrd 250 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
144143expcom 402 . . . . . . . . 9 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
145144a2d 29 . . . . . . . 8 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))))
14632, 37, 42, 37, 59, 145nn0ind 11724 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
14727, 146syl 17 . . . . . 6 (𝑑 ∈ ℕ → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))))
148147impcom 396 . . . . 5 ((𝜑𝑑 ∈ ℕ) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
1491adantr 472 . . . . 5 ((𝜑𝑑 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
15026, 148, 149rspcdva 3468 . . . 4 ((𝜑𝑑 ∈ ℕ) → ((𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
15112, 150syl5 34 . . 3 ((𝜑𝑑 ∈ ℕ) → (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
152151rexlimdva 3178 . 2 (𝜑 → (∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
15311, 152mpd 15 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056   class class class wbr 4811  cmpt 4890  cfv 6070  (class class class)co 6846  𝑓 cof 7097  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198   < clt 10332  cle 10333  cmin 10524  -cneg 10525   / cdiv 10942  cn 11278  0cn0 11542  cz 11628  cexp 13072  0𝑝c0p 23741  Polycply 24245  coeffccoe 24247  degcdgr 24248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-z 11629  df-uz 11892  df-rp 12034  df-fz 12539  df-fzo 12679  df-fl 12806  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-rlim 14519  df-sum 14716  df-0p 23742  df-ply 24249  df-coe 24251  df-dgr 24252
This theorem is referenced by:  plydivalg  24359
  Copyright terms: Public domain W3C validator