MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivex Structured version   Visualization version   GIF version

Theorem plydivex 25817
Description: Lemma for plydivalg 25819. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
plydivex (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivex
Dummy variables 𝑧 𝑓 𝑑 𝑝 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrcl 25754 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
43nn0red 12535 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
5 plydiv.g . . . . . 6 (𝜑𝐺 ∈ (Poly‘𝑆))
6 dgrcl 25754 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝜑 → (deg‘𝐺) ∈ ℕ0)
87nn0red 12535 . . . 4 (𝜑 → (deg‘𝐺) ∈ ℝ)
94, 8resubcld 11644 . . 3 (𝜑 → ((deg‘𝐹) − (deg‘𝐺)) ∈ ℝ)
10 arch 12471 . . 3 (((deg‘𝐹) − (deg‘𝐺)) ∈ ℝ → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)
119, 10syl 17 . 2 (𝜑 → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)
12 olc 866 . . . 4 (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑))
13 eqeq1 2736 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 = 0𝑝𝐹 = 0𝑝))
14 fveq2 6891 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
1514oveq1d 7426 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝐹) − (deg‘𝐺)))
1615breq1d 5158 . . . . . . 7 (𝑓 = 𝐹 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑))
1713, 16orbi12d 917 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)))
18 oveq1 7418 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑞)))
19 plydiv.r . . . . . . . . . 10 𝑅 = (𝐹f − (𝐺f · 𝑞))
2018, 19eqtr4di 2790 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓f − (𝐺f · 𝑞)) = 𝑅)
2120eqeq1d 2734 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓f − (𝐺f · 𝑞)) = 0𝑝𝑅 = 0𝑝))
2220fveq2d 6895 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘(𝑓f − (𝐺f · 𝑞))) = (deg‘𝑅))
2322breq1d 5158 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
2421, 23orbi12d 917 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2524rexbidv 3178 . . . . . 6 (𝑓 = 𝐹 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2617, 25imbi12d 344 . . . . 5 (𝑓 = 𝐹 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))))
27 nnnn0 12481 . . . . . . 7 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
28 breq2 5152 . . . . . . . . . . . 12 (𝑥 = 0 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 0))
2928orbi2d 914 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0)))
3029imbi1d 341 . . . . . . . . . 10 (𝑥 = 0 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3130ralbidv 3177 . . . . . . . . 9 (𝑥 = 0 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3231imbi2d 340 . . . . . . . 8 (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
33 breq2 5152 . . . . . . . . . . . 12 (𝑥 = 𝑑 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑))
3433orbi2d 914 . . . . . . . . . . 11 (𝑥 = 𝑑 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑)))
3534imbi1d 341 . . . . . . . . . 10 (𝑥 = 𝑑 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3635ralbidv 3177 . . . . . . . . 9 (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3736imbi2d 340 . . . . . . . 8 (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
38 breq2 5152 . . . . . . . . . . . 12 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
3938orbi2d 914 . . . . . . . . . . 11 (𝑥 = (𝑑 + 1) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))))
4039imbi1d 341 . . . . . . . . . 10 (𝑥 = (𝑑 + 1) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
4140ralbidv 3177 . . . . . . . . 9 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
4241imbi2d 340 . . . . . . . 8 (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
43 plydiv.pl . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4443adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
45 plydiv.tm . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
4645adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
47 plydiv.rc . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4847adantlr 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
49 plydiv.m1 . . . . . . . . . . . 12 (𝜑 → -1 ∈ 𝑆)
5049adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → -1 ∈ 𝑆)
51 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝑓 ∈ (Poly‘𝑆))
525adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝐺 ∈ (Poly‘𝑆))
53 plydiv.z . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0𝑝)
5453adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝐺 ≠ 0𝑝)
55 eqid 2732 . . . . . . . . . . 11 (𝑓f − (𝐺f · 𝑞)) = (𝑓f − (𝐺f · 𝑞))
56 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))
5744, 46, 48, 50, 51, 52, 54, 55, 56plydivlem3 25815 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))
5857expr 457 . . . . . . . . 9 ((𝜑𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))
5958ralrimiva 3146 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))
60 eqeq1 2736 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓 = 0𝑝𝑔 = 0𝑝))
61 fveq2 6891 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6261oveq1d 7426 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝑔) − (deg‘𝐺)))
6362breq1d 5158 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑))
6460, 63orbi12d 917 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ↔ (𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑)))
65 oveq1 7418 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (𝑓f − (𝐺f · 𝑞)) = (𝑔f − (𝐺f · 𝑞)))
6665eqeq1d 2734 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ↔ (𝑔f − (𝐺f · 𝑞)) = 0𝑝))
6765fveq2d 6895 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (deg‘(𝑓f − (𝐺f · 𝑞))) = (deg‘(𝑔f − (𝐺f · 𝑞))))
6867breq1d 5158 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)))
6966, 68orbi12d 917 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
7069rexbidv 3178 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
7164, 70imbi12d 344 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
7271cbvralvw 3234 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
73 simplll 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝜑)
7473, 43sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
7573, 45sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
7673, 47sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
7773, 49syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → -1 ∈ 𝑆)
78 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑓 ∈ (Poly‘𝑆))
7973, 5syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝐺 ∈ (Poly‘𝑆))
8073, 53syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝐺 ≠ 0𝑝)
81 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑑 ∈ ℕ0)
82 simprrr 780 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)
83 simprrl 779 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑓 ≠ 0𝑝)
84 eqid 2732 . . . . . . . . . . . . . . . 16 (𝑔f − (𝐺f · 𝑝)) = (𝑔f − (𝐺f · 𝑝))
85 oveq1 7418 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤𝑑) = (𝑧𝑑))
8685oveq2d 7427 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤𝑑)) = ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧𝑑)))
8786cbvmptv 5261 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤𝑑))) = (𝑧 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧𝑑)))
88 simprl 769 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
89 oveq2 7419 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = 𝑝 → (𝐺f · 𝑞) = (𝐺f · 𝑝))
9089oveq2d 7427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → (𝑔f − (𝐺f · 𝑞)) = (𝑔f − (𝐺f · 𝑝)))
9190eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = 𝑝 → ((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ↔ (𝑔f − (𝐺f · 𝑝)) = 0𝑝))
9290fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → (deg‘(𝑔f − (𝐺f · 𝑞))) = (deg‘(𝑔f − (𝐺f · 𝑝))))
9392breq1d 5158 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = 𝑝 → ((deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺)))
9491, 93orbi12d 917 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑝 → (((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
9594cbvrexvw 3235 . . . . . . . . . . . . . . . . . . 19 (∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺)))
9695imbi2i 335 . . . . . . . . . . . . . . . . . 18 (((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
9796ralbii 3093 . . . . . . . . . . . . . . . . 17 (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
9888, 97sylib 217 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
99 eqid 2732 . . . . . . . . . . . . . . . 16 (coeff‘𝑓) = (coeff‘𝑓)
100 eqid 2732 . . . . . . . . . . . . . . . 16 (coeff‘𝐺) = (coeff‘𝐺)
101 eqid 2732 . . . . . . . . . . . . . . . 16 (deg‘𝑓) = (deg‘𝑓)
102 eqid 2732 . . . . . . . . . . . . . . . 16 (deg‘𝐺) = (deg‘𝐺)
10374, 75, 76, 77, 78, 79, 80, 55, 81, 82, 83, 84, 87, 98, 99, 100, 101, 102plydivlem4 25816 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))
104103exp32 421 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
105104ralrimdva 3154 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ0) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
10672, 105biimtrid 241 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
107106ancld 551 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
108 dgrcl 25754 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (Poly‘𝑆) → (deg‘𝑓) ∈ ℕ0)
109108adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈ ℕ0)
110109nn0zd 12586 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈ ℤ)
1115ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
112111, 6syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈ ℕ0)
113112nn0zd 12586 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈ ℤ)
114110, 113zsubcld 12673 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈ ℤ)
115 nn0z 12585 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
116115ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℤ)
117 zleltp1 12615 . . . . . . . . . . . . . . . . . . 19 ((((deg‘𝑓) − (deg‘𝐺)) ∈ ℤ ∧ 𝑑 ∈ ℤ) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
118114, 116, 117syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
119114zred 12668 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈ ℝ)
120 nn0re 12483 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
121120ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℝ)
122119, 121leloed 11359 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
123118, 122bitr3d 280 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
124123orbi2d 914 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
125 pm5.63 1018 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
126 df-ne 2941 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ≠ 0𝑝 ↔ ¬ 𝑓 = 0𝑝)
127126anbi1i 624 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))
128127orbi2i 911 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
129125, 128bitr4i 277 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
130129orbi2i 911 . . . . . . . . . . . . . . . . . 18 ((((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
131 or12 919 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
132 or12 919 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
133130, 131, 1323bitr4i 302 . . . . . . . . . . . . . . . . 17 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
134 orass 920 . . . . . . . . . . . . . . . . 17 (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
135133, 134bitr4i 277 . . . . . . . . . . . . . . . 16 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
136124, 135bitrdi 286 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
137136imbi1d 341 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
138 jaob 960 . . . . . . . . . . . . . 14 ((((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
139137, 138bitrdi 286 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
140139ralbidva 3175 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
141 r19.26 3111 . . . . . . . . . . . 12 (∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
142140, 141bitrdi 286 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
143107, 142sylibrd 258 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
144143expcom 414 . . . . . . . . 9 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
145144a2d 29 . . . . . . . 8 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
14632, 37, 42, 37, 59, 145nn0ind 12659 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
14727, 146syl 17 . . . . . 6 (𝑑 ∈ ℕ → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
148147impcom 408 . . . . 5 ((𝜑𝑑 ∈ ℕ) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))
1491adantr 481 . . . . 5 ((𝜑𝑑 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
15026, 148, 149rspcdva 3613 . . . 4 ((𝜑𝑑 ∈ ℕ) → ((𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
15112, 150syl5 34 . . 3 ((𝜑𝑑 ∈ ℕ) → (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
152151rexlimdva 3155 . 2 (𝜑 → (∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
15311, 152mpd 15 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7411  f cof 7670  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   · cmul 11117   < clt 11250  cle 11251  cmin 11446  -cneg 11447   / cdiv 11873  cn 12214  0cn0 12474  cz 12560  cexp 14029  0𝑝c0p 25193  Polycply 25705  coeffccoe 25707  degcdgr 25708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-fz 13487  df-fzo 13630  df-fl 13759  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-rlim 15435  df-sum 15635  df-0p 25194  df-ply 25709  df-coe 25711  df-dgr 25712
This theorem is referenced by:  plydivalg  25819
  Copyright terms: Public domain W3C validator