MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivex Structured version   Visualization version   GIF version

Theorem plydivex 26238
Description: Lemma for plydivalg 26240. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
Assertion
Ref Expression
plydivex (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivex
Dummy variables 𝑧 𝑓 𝑑 𝑝 𝑔 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . . 6 (𝜑𝐹 ∈ (Poly‘𝑆))
2 dgrcl 26171 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
43nn0red 12480 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℝ)
5 plydiv.g . . . . . 6 (𝜑𝐺 ∈ (Poly‘𝑆))
6 dgrcl 26171 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝜑 → (deg‘𝐺) ∈ ℕ0)
87nn0red 12480 . . . 4 (𝜑 → (deg‘𝐺) ∈ ℝ)
94, 8resubcld 11582 . . 3 (𝜑 → ((deg‘𝐹) − (deg‘𝐺)) ∈ ℝ)
10 arch 12415 . . 3 (((deg‘𝐹) − (deg‘𝐺)) ∈ ℝ → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)
119, 10syl 17 . 2 (𝜑 → ∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)
12 olc 868 . . . 4 (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑))
13 eqeq1 2733 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 = 0𝑝𝐹 = 0𝑝))
14 fveq2 6840 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
1514oveq1d 7384 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝐹) − (deg‘𝐺)))
1615breq1d 5112 . . . . . . 7 (𝑓 = 𝐹 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑))
1713, 16orbi12d 918 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑)))
18 oveq1 7376 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑞)))
19 plydiv.r . . . . . . . . . 10 𝑅 = (𝐹f − (𝐺f · 𝑞))
2018, 19eqtr4di 2782 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓f − (𝐺f · 𝑞)) = 𝑅)
2120eqeq1d 2731 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓f − (𝐺f · 𝑞)) = 0𝑝𝑅 = 0𝑝))
2220fveq2d 6844 . . . . . . . . 9 (𝑓 = 𝐹 → (deg‘(𝑓f − (𝐺f · 𝑞))) = (deg‘𝑅))
2322breq1d 5112 . . . . . . . 8 (𝑓 = 𝐹 → ((deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
2421, 23orbi12d 918 . . . . . . 7 (𝑓 = 𝐹 → (((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2524rexbidv 3157 . . . . . 6 (𝑓 = 𝐹 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2617, 25imbi12d 344 . . . . 5 (𝑓 = 𝐹 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))))
27 nnnn0 12425 . . . . . . 7 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
28 breq2 5106 . . . . . . . . . . . 12 (𝑥 = 0 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 0))
2928orbi2d 915 . . . . . . . . . . 11 (𝑥 = 0 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0)))
3029imbi1d 341 . . . . . . . . . 10 (𝑥 = 0 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3130ralbidv 3156 . . . . . . . . 9 (𝑥 = 0 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3231imbi2d 340 . . . . . . . 8 (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
33 breq2 5106 . . . . . . . . . . . 12 (𝑥 = 𝑑 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑))
3433orbi2d 915 . . . . . . . . . . 11 (𝑥 = 𝑑 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑)))
3534imbi1d 341 . . . . . . . . . 10 (𝑥 = 𝑑 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3635ralbidv 3156 . . . . . . . . 9 (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
3736imbi2d 340 . . . . . . . 8 (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
38 breq2 5106 . . . . . . . . . . . 12 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) − (deg‘𝐺)) < 𝑥 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
3938orbi2d 915 . . . . . . . . . . 11 (𝑥 = (𝑑 + 1) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) ↔ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1))))
4039imbi1d 341 . . . . . . . . . 10 (𝑥 = (𝑑 + 1) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
4140ralbidv 3156 . . . . . . . . 9 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
4241imbi2d 340 . . . . . . . 8 (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑥) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
43 plydiv.pl . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4443adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
45 plydiv.tm . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
4645adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
47 plydiv.rc . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
4847adantlr 715 . . . . . . . . . . 11 (((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
49 plydiv.m1 . . . . . . . . . . . 12 (𝜑 → -1 ∈ 𝑆)
5049adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → -1 ∈ 𝑆)
51 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝑓 ∈ (Poly‘𝑆))
525adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝐺 ∈ (Poly‘𝑆))
53 plydiv.z . . . . . . . . . . . 12 (𝜑𝐺 ≠ 0𝑝)
5453adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → 𝐺 ≠ 0𝑝)
55 eqid 2729 . . . . . . . . . . 11 (𝑓f − (𝐺f · 𝑞)) = (𝑓f − (𝐺f · 𝑞))
56 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))
5744, 46, 48, 50, 51, 52, 54, 55, 56plydivlem3 26236 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘𝑆) ∧ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))
5857expr 456 . . . . . . . . 9 ((𝜑𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))
5958ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 0) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))
60 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (𝑓 = 0𝑝𝑔 = 0𝑝))
61 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6261oveq1d 7384 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((deg‘𝑓) − (deg‘𝐺)) = ((deg‘𝑔) − (deg‘𝐺)))
6362breq1d 5112 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ↔ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑))
6460, 63orbi12d 918 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ↔ (𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑)))
65 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (𝑓f − (𝐺f · 𝑞)) = (𝑔f − (𝐺f · 𝑞)))
6665eqeq1d 2731 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ↔ (𝑔f − (𝐺f · 𝑞)) = 0𝑝))
6765fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝑔 → (deg‘(𝑓f − (𝐺f · 𝑞))) = (deg‘(𝑔f − (𝐺f · 𝑞))))
6867breq1d 5112 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)))
6966, 68orbi12d 918 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
7069rexbidv 3157 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
7164, 70imbi12d 344 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
7271cbvralvw 3213 . . . . . . . . . . . . 13 (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
73 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝜑)
7473, 43sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
7573, 45sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
7673, 47sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
7773, 49syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → -1 ∈ 𝑆)
78 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑓 ∈ (Poly‘𝑆))
7973, 5syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝐺 ∈ (Poly‘𝑆))
8073, 53syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝐺 ≠ 0𝑝)
81 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑑 ∈ ℕ0)
82 simprrr 781 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)
83 simprrl 780 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → 𝑓 ≠ 0𝑝)
84 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑔f − (𝐺f · 𝑝)) = (𝑔f − (𝐺f · 𝑝))
85 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑧 → (𝑤𝑑) = (𝑧𝑑))
8685oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑧 → ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤𝑑)) = ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧𝑑)))
8786cbvmptv 5206 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑤𝑑))) = (𝑧 ∈ ℂ ↦ ((((coeff‘𝑓)‘(deg‘𝑓)) / ((coeff‘𝐺)‘(deg‘𝐺))) · (𝑧𝑑)))
88 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))))
89 oveq2 7377 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = 𝑝 → (𝐺f · 𝑞) = (𝐺f · 𝑝))
9089oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → (𝑔f − (𝐺f · 𝑞)) = (𝑔f − (𝐺f · 𝑝)))
9190eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = 𝑝 → ((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ↔ (𝑔f − (𝐺f · 𝑝)) = 0𝑝))
9290fveq2d 6844 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → (deg‘(𝑔f − (𝐺f · 𝑞))) = (deg‘(𝑔f − (𝐺f · 𝑝))))
9392breq1d 5112 . . . . . . . . . . . . . . . . . . . . 21 (𝑞 = 𝑝 → ((deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺)))
9491, 93orbi12d 918 . . . . . . . . . . . . . . . . . . . 20 (𝑞 = 𝑝 → (((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
9594cbvrexvw 3214 . . . . . . . . . . . . . . . . . . 19 (∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺)))
9695imbi2i 336 . . . . . . . . . . . . . . . . . 18 (((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
9796ralbii 3075 . . . . . . . . . . . . . . . . 17 (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
9888, 97sylib 218 . . . . . . . . . . . . . . . 16 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑝 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑝)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑝))) < (deg‘𝐺))))
99 eqid 2729 . . . . . . . . . . . . . . . 16 (coeff‘𝑓) = (coeff‘𝑓)
100 eqid 2729 . . . . . . . . . . . . . . . 16 (coeff‘𝐺) = (coeff‘𝐺)
101 eqid 2729 . . . . . . . . . . . . . . . 16 (deg‘𝑓) = (deg‘𝑓)
102 eqid 2729 . . . . . . . . . . . . . . . 16 (deg‘𝐺) = (deg‘𝐺)
10374, 75, 76, 77, 78, 79, 80, 55, 81, 82, 83, 84, 87, 98, 99, 100, 101, 102plydivlem4 26237 . . . . . . . . . . . . . . 15 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) ∧ (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))
104103exp32 420 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
105104ralrimdva 3133 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ0) → (∀𝑔 ∈ (Poly‘𝑆)((𝑔 = 0𝑝 ∨ ((deg‘𝑔) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑔f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑔f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
10672, 105biimtrid 242 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
107106ancld 550 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
108 dgrcl 26171 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ∈ (Poly‘𝑆) → (deg‘𝑓) ∈ ℕ0)
109108adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈ ℕ0)
110109nn0zd 12531 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝑓) ∈ ℤ)
1115ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
112111, 6syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈ ℕ0)
113112nn0zd 12531 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (deg‘𝐺) ∈ ℤ)
114110, 113zsubcld 12619 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈ ℤ)
115 nn0z 12530 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
116115ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℤ)
117 zleltp1 12560 . . . . . . . . . . . . . . . . . . 19 ((((deg‘𝑓) − (deg‘𝐺)) ∈ ℤ ∧ 𝑑 ∈ ℤ) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
118114, 116, 117syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)))
119114zred 12614 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((deg‘𝑓) − (deg‘𝐺)) ∈ ℝ)
120 nn0re 12427 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
121120ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → 𝑑 ∈ ℝ)
122119, 121leloed 11293 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) ≤ 𝑑 ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
123118, 122bitr3d 281 . . . . . . . . . . . . . . . . 17 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
124123orbi2d 915 . . . . . . . . . . . . . . . 16 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
125 pm5.63 1021 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
126 df-ne 2926 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 ≠ 0𝑝 ↔ ¬ 𝑓 = 0𝑝)
127126anbi1i 624 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))
128127orbi2i 912 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (¬ 𝑓 = 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
129125, 128bitr4i 278 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) ↔ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
130129orbi2i 912 . . . . . . . . . . . . . . . . . 18 ((((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
131 or12 920 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
132 or12 920 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))) ↔ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 = 0𝑝 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
133130, 131, 1323bitr4i 303 . . . . . . . . . . . . . . . . 17 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
134 orass 921 . . . . . . . . . . . . . . . . 17 (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ (𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
135133, 134bitr4i 278 . . . . . . . . . . . . . . . 16 ((𝑓 = 0𝑝 ∨ (((deg‘𝑓) − (deg‘𝐺)) < 𝑑 ∨ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)))
136124, 135bitrdi 287 . . . . . . . . . . . . . . 15 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) ↔ ((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑))))
137136imbi1d 341 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
138 jaob 963 . . . . . . . . . . . . . 14 ((((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) ∨ (𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
139137, 138bitrdi 287 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘𝑆)) → (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
140139ralbidva 3154 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ ∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
141 r19.26 3091 . . . . . . . . . . . 12 (∀𝑓 ∈ (Poly‘𝑆)(((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
142140, 141bitrdi 287 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ↔ (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∧ ∀𝑓 ∈ (Poly‘𝑆)((𝑓 ≠ 0𝑝 ∧ ((deg‘𝑓) − (deg‘𝐺)) = 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
143107, 142sylibrd 259 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
144143expcom 413 . . . . . . . . 9 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
145144a2d 29 . . . . . . . 8 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))) → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < (𝑑 + 1)) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))))
14632, 37, 42, 37, 59, 145nn0ind 12605 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
14727, 146syl 17 . . . . . 6 (𝑑 ∈ ℕ → (𝜑 → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺)))))
148147impcom 407 . . . . 5 ((𝜑𝑑 ∈ ℕ) → ∀𝑓 ∈ (Poly‘𝑆)((𝑓 = 0𝑝 ∨ ((deg‘𝑓) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)((𝑓f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝑓f − (𝐺f · 𝑞))) < (deg‘𝐺))))
1491adantr 480 . . . . 5 ((𝜑𝑑 ∈ ℕ) → 𝐹 ∈ (Poly‘𝑆))
15026, 148, 149rspcdva 3586 . . . 4 ((𝜑𝑑 ∈ ℕ) → ((𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
15112, 150syl5 34 . . 3 ((𝜑𝑑 ∈ ℕ) → (((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
152151rexlimdva 3134 . 2 (𝜑 → (∃𝑑 ∈ ℕ ((deg‘𝐹) − (deg‘𝐺)) < 𝑑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
15311, 152mpd 15 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  0cn0 12418  cz 12505  cexp 14002  0𝑝c0p 25603  Polycply 26122  coeffccoe 26124  degcdgr 26125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25604  df-ply 26126  df-coe 26128  df-dgr 26129
This theorem is referenced by:  plydivalg  26240
  Copyright terms: Public domain W3C validator