| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralel | Structured version Visualization version GIF version | ||
| Description: All elements of a class are elements of the class. (Contributed by AV, 30-Oct-2020.) |
| Ref | Expression |
|---|---|
| ralel | ⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | rgen 3047 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: raleleq 3317 raleleqOLD 3318 rexuz3 15322 uvtx01vtx 29331 refrelcosslem 38460 |
| Copyright terms: Public domain | W3C validator |