Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralel | Structured version Visualization version GIF version |
Description: All elements of a class are elements of the class. (Contributed by AV, 30-Oct-2020.) |
Ref | Expression |
---|---|
ralel | ⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
2 | 1 | rgen 3073 | 1 ⊢ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 |
This theorem depends on definitions: df-bi 206 df-ral 3068 |
This theorem is referenced by: raleleqALT 3348 rexuz3 14988 uvtx01vtx 27667 refrelcosslem 36507 |
Copyright terms: Public domain | W3C validator |