MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleleqALT Structured version   Visualization version   GIF version

Theorem raleleqALT 3333
Description: Alternate proof of raleleq 3329 using ralel 3056, being longer and using more axioms. (Contributed by AV, 30-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
raleleqALT (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem raleleqALT
StepHypRef Expression
1 ralel 3056 . 2 𝑥𝐵 𝑥𝐵
2 id 22 . . 3 (𝐴 = 𝐵𝐴 = 𝐵)
32raleqdv 3317 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑥𝐵 ↔ ∀𝑥𝐵 𝑥𝐵))
41, 3mpbiri 258 1 (𝐴 = 𝐵 → ∀𝑥𝐴 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-cleq 2716  df-ral 3054  df-rex 3063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator