Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleleqALT | Structured version Visualization version GIF version |
Description: Alternate proof of raleleq 3356 using ralel 3075, being longer and using more axioms. (Contributed by AV, 30-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
raleleqALT | ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralel 3075 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵 | |
2 | id 22 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
3 | 2 | raleqdv 3348 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐵)) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ (𝐴 = 𝐵 → ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ral 3069 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |