MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuz3 Structured version   Visualization version   GIF version

Theorem rexuz3 15315
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuz3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem rexuz3
StepHypRef Expression
1 ralel 3047 . . . 4 𝑘𝑍 𝑘𝑍
2 fveq2 6858 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
3 rexuz3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
42, 3eqtr4di 2782 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
54raleqdv 3299 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ↔ ∀𝑘𝑍 𝑘𝑍))
65rspcev 3588 . . . 4 ((𝑀 ∈ ℤ ∧ ∀𝑘𝑍 𝑘𝑍) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
71, 6mpan2 691 . . 3 (𝑀 ∈ ℤ → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
87biantrurd 532 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
93uztrn2 12812 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
109a1d 25 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝜑𝑘𝑍))
1110ancrd 551 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝜑 → (𝑘𝑍𝜑)))
1211ralimdva 3145 . . . . . . 7 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
13 eluzelz 12803 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1413, 3eleq2s 2846 . . . . . . 7 (𝑗𝑍𝑗 ∈ ℤ)
1512, 14jctild 525 . . . . . 6 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑))))
1615imp 406 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
17 uzid 12808 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
18 simpl 482 . . . . . . . 8 ((𝑘𝑍𝜑) → 𝑘𝑍)
1918ralimi 3066 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) → ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
20 eleq1w 2811 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2120rspcva 3586 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍) → 𝑗𝑍)
2217, 19, 21syl2an 596 . . . . . 6 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → 𝑗𝑍)
23 simpr 484 . . . . . . . 8 ((𝑘𝑍𝜑) → 𝜑)
2423ralimi 3066 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) → ∀𝑘 ∈ (ℤ𝑗)𝜑)
2524adantl 481 . . . . . 6 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → ∀𝑘 ∈ (ℤ𝑗)𝜑)
2622, 25jca 511 . . . . 5 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑))
2716, 26impbii 209 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
2827rexbii2 3072 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑))
29 rexanuz 15312 . . 3 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
3028, 29bitr2i 276 . 2 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
318, 30bitr2di 288 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cfv 6511  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794
This theorem is referenced by:  rexanuz2  15316  cau4  15323  clim2  15470  isercoll  15634  lmbr2  23146  lmff  23188  lmmbr3  25160  iscau3  25178  uniioombllem6  25489  ulmres  26297  rrncmslem  37826  clim2f  45634  clim2f2  45668  climuzlem  45741  lmbr3v  45743  climisp  45744  climrescn  45746  climxrrelem  45747  climxrre  45748  xlimbr  45825  xlimmnfvlem1  45830  xlimmnfvlem2  45831  xlimpnfvlem1  45834  xlimpnfvlem2  45835
  Copyright terms: Public domain W3C validator