MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtx01vtx Structured version   Visualization version   GIF version

Theorem uvtx01vtx 28692
Description: If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtx01vtx (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))

Proof of Theorem uvtx01vtx
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . . . 5 𝑉 = (Vtx‘𝐺)
21uvtxval 28682 . . . 4 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
32a1i 11 . . 3 (𝐸 = ∅ → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
43neeq1d 3000 . 2 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅))
5 rabn0 4385 . . 3 ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
65a1i 11 . 2 (𝐸 = ∅ → ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
7 falseral0 4519 . . . . . . . . . 10 ((∀𝑛 ¬ 𝑛 ∈ ∅ ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → (𝑉 ∖ {𝑣}) = ∅)
87ex 413 . . . . . . . . 9 (∀𝑛 ¬ 𝑛 ∈ ∅ → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅))
9 noel 4330 . . . . . . . . 9 ¬ 𝑛 ∈ ∅
108, 9mpg 1799 . . . . . . . 8 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅)
11 ssdif0 4363 . . . . . . . . 9 (𝑉 ⊆ {𝑣} ↔ (𝑉 ∖ {𝑣}) = ∅)
12 sssn 4829 . . . . . . . . . 10 (𝑉 ⊆ {𝑣} ↔ (𝑉 = ∅ ∨ 𝑉 = {𝑣}))
13 ne0i 4334 . . . . . . . . . . . 12 (𝑣𝑉𝑉 ≠ ∅)
14 eqneqall 2951 . . . . . . . . . . . 12 (𝑉 = ∅ → (𝑉 ≠ ∅ → 𝑉 = {𝑣}))
1513, 14syl5 34 . . . . . . . . . . 11 (𝑉 = ∅ → (𝑣𝑉𝑉 = {𝑣}))
16 ax-1 6 . . . . . . . . . . 11 (𝑉 = {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1715, 16jaoi 855 . . . . . . . . . 10 ((𝑉 = ∅ ∨ 𝑉 = {𝑣}) → (𝑣𝑉𝑉 = {𝑣}))
1812, 17sylbi 216 . . . . . . . . 9 (𝑉 ⊆ {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1911, 18sylbir 234 . . . . . . . 8 ((𝑉 ∖ {𝑣}) = ∅ → (𝑣𝑉𝑉 = {𝑣}))
2010, 19syl 17 . . . . . . 7 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑣𝑉𝑉 = {𝑣}))
2120impcom 408 . . . . . 6 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → 𝑉 = {𝑣})
22 vsnid 4665 . . . . . . . 8 𝑣 ∈ {𝑣}
23 eleq2 2822 . . . . . . . 8 (𝑉 = {𝑣} → (𝑣𝑉𝑣 ∈ {𝑣}))
2422, 23mpbiri 257 . . . . . . 7 (𝑉 = {𝑣} → 𝑣𝑉)
25 ralel 3064 . . . . . . . 8 𝑛 ∈ ∅ 𝑛 ∈ ∅
26 difeq1 4115 . . . . . . . . . 10 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ({𝑣} ∖ {𝑣}))
27 difid 4370 . . . . . . . . . 10 ({𝑣} ∖ {𝑣}) = ∅
2826, 27eqtrdi 2788 . . . . . . . . 9 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ∅)
2928raleqdv 3325 . . . . . . . 8 (𝑉 = {𝑣} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ ∅))
3025, 29mpbiri 257 . . . . . . 7 (𝑉 = {𝑣} → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)
3124, 30jca 512 . . . . . 6 (𝑉 = {𝑣} → (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
3221, 31impbii 208 . . . . 5 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣})
3332a1i 11 . . . 4 (𝐸 = ∅ → ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣}))
3433exbidv 1924 . . 3 (𝐸 = ∅ → (∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ ∃𝑣 𝑉 = {𝑣}))
35 isuvtx.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
3635eqeq1i 2737 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
37 nbgr0edg 28652 . . . . . . 7 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3836, 37sylbi 216 . . . . . 6 (𝐸 = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3938eleq2d 2819 . . . . 5 (𝐸 = ∅ → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ ∅))
4039rexralbidv 3220 . . . 4 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
41 df-rex 3071 . . . 4 (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
4240, 41bitrdi 286 . . 3 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)))
431fvexi 6905 . . . 4 𝑉 ∈ V
44 hash1snb 14381 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4543, 44mp1i 13 . . 3 (𝐸 = ∅ → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4634, 42, 453bitr4d 310 . 2 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (♯‘𝑉) = 1))
474, 6, 463bitrd 304 1 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  cdif 3945  wss 3948  c0 4322  {csn 4628  cfv 6543  (class class class)co 7411  1c1 11113  chash 14292  Vtxcvtx 28294  Edgcedg 28345   NeighbVtx cnbgr 28627  UnivVtxcuvtx 28680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-hash 14293  df-nbgr 28628  df-uvtx 28681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator