MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtx01vtx Structured version   Visualization version   GIF version

Theorem uvtx01vtx 29342
Description: If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtx01vtx (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))

Proof of Theorem uvtx01vtx
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . . . 5 𝑉 = (Vtx‘𝐺)
21uvtxval 29332 . . . 4 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
32a1i 11 . . 3 (𝐸 = ∅ → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
43neeq1d 2984 . 2 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅))
5 rabn0 4340 . . 3 ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
65a1i 11 . 2 (𝐸 = ∅ → ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
7 falseral0 4467 . . . . . . . . . 10 ((∀𝑛 ¬ 𝑛 ∈ ∅ ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → (𝑉 ∖ {𝑣}) = ∅)
87ex 412 . . . . . . . . 9 (∀𝑛 ¬ 𝑛 ∈ ∅ → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅))
9 noel 4289 . . . . . . . . 9 ¬ 𝑛 ∈ ∅
108, 9mpg 1797 . . . . . . . 8 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅)
11 ssdif0 4317 . . . . . . . . 9 (𝑉 ⊆ {𝑣} ↔ (𝑉 ∖ {𝑣}) = ∅)
12 sssn 4777 . . . . . . . . . 10 (𝑉 ⊆ {𝑣} ↔ (𝑉 = ∅ ∨ 𝑉 = {𝑣}))
13 ne0i 4292 . . . . . . . . . . . 12 (𝑣𝑉𝑉 ≠ ∅)
14 eqneqall 2936 . . . . . . . . . . . 12 (𝑉 = ∅ → (𝑉 ≠ ∅ → 𝑉 = {𝑣}))
1513, 14syl5 34 . . . . . . . . . . 11 (𝑉 = ∅ → (𝑣𝑉𝑉 = {𝑣}))
16 ax-1 6 . . . . . . . . . . 11 (𝑉 = {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1715, 16jaoi 857 . . . . . . . . . 10 ((𝑉 = ∅ ∨ 𝑉 = {𝑣}) → (𝑣𝑉𝑉 = {𝑣}))
1812, 17sylbi 217 . . . . . . . . 9 (𝑉 ⊆ {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1911, 18sylbir 235 . . . . . . . 8 ((𝑉 ∖ {𝑣}) = ∅ → (𝑣𝑉𝑉 = {𝑣}))
2010, 19syl 17 . . . . . . 7 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑣𝑉𝑉 = {𝑣}))
2120impcom 407 . . . . . 6 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → 𝑉 = {𝑣})
22 vsnid 4615 . . . . . . . 8 𝑣 ∈ {𝑣}
23 eleq2 2817 . . . . . . . 8 (𝑉 = {𝑣} → (𝑣𝑉𝑣 ∈ {𝑣}))
2422, 23mpbiri 258 . . . . . . 7 (𝑉 = {𝑣} → 𝑣𝑉)
25 ralel 3047 . . . . . . . 8 𝑛 ∈ ∅ 𝑛 ∈ ∅
26 difeq1 4070 . . . . . . . . . 10 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ({𝑣} ∖ {𝑣}))
27 difid 4327 . . . . . . . . . 10 ({𝑣} ∖ {𝑣}) = ∅
2826, 27eqtrdi 2780 . . . . . . . . 9 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ∅)
2928raleqdv 3289 . . . . . . . 8 (𝑉 = {𝑣} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ ∅))
3025, 29mpbiri 258 . . . . . . 7 (𝑉 = {𝑣} → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)
3124, 30jca 511 . . . . . 6 (𝑉 = {𝑣} → (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
3221, 31impbii 209 . . . . 5 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣})
3332a1i 11 . . . 4 (𝐸 = ∅ → ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣}))
3433exbidv 1921 . . 3 (𝐸 = ∅ → (∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ ∃𝑣 𝑉 = {𝑣}))
35 isuvtx.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
3635eqeq1i 2734 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
37 nbgr0edg 29302 . . . . . . 7 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3836, 37sylbi 217 . . . . . 6 (𝐸 = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3938eleq2d 2814 . . . . 5 (𝐸 = ∅ → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ ∅))
4039rexralbidv 3195 . . . 4 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
41 df-rex 3054 . . . 4 (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
4240, 41bitrdi 287 . . 3 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)))
431fvexi 6836 . . . 4 𝑉 ∈ V
44 hash1snb 14326 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4543, 44mp1i 13 . . 3 (𝐸 = ∅ → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4634, 42, 453bitr4d 311 . 2 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (♯‘𝑉) = 1))
474, 6, 463bitrd 305 1 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  wss 3903  c0 4284  {csn 4577  cfv 6482  (class class class)co 7349  1c1 11010  chash 14237  Vtxcvtx 28941  Edgcedg 28992   NeighbVtx cnbgr 29277  UnivVtxcuvtx 29330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-nbgr 29278  df-uvtx 29331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator