MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtx01vtx Structured version   Visualization version   GIF version

Theorem uvtx01vtx 28643
Description: If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtx01vtx (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))

Proof of Theorem uvtx01vtx
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . . . 5 𝑉 = (Vtx‘𝐺)
21uvtxval 28633 . . . 4 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
32a1i 11 . . 3 (𝐸 = ∅ → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
43neeq1d 3000 . 2 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅))
5 rabn0 4384 . . 3 ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
65a1i 11 . 2 (𝐸 = ∅ → ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
7 falseral0 4518 . . . . . . . . . 10 ((∀𝑛 ¬ 𝑛 ∈ ∅ ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → (𝑉 ∖ {𝑣}) = ∅)
87ex 413 . . . . . . . . 9 (∀𝑛 ¬ 𝑛 ∈ ∅ → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅))
9 noel 4329 . . . . . . . . 9 ¬ 𝑛 ∈ ∅
108, 9mpg 1799 . . . . . . . 8 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅)
11 ssdif0 4362 . . . . . . . . 9 (𝑉 ⊆ {𝑣} ↔ (𝑉 ∖ {𝑣}) = ∅)
12 sssn 4828 . . . . . . . . . 10 (𝑉 ⊆ {𝑣} ↔ (𝑉 = ∅ ∨ 𝑉 = {𝑣}))
13 ne0i 4333 . . . . . . . . . . . 12 (𝑣𝑉𝑉 ≠ ∅)
14 eqneqall 2951 . . . . . . . . . . . 12 (𝑉 = ∅ → (𝑉 ≠ ∅ → 𝑉 = {𝑣}))
1513, 14syl5 34 . . . . . . . . . . 11 (𝑉 = ∅ → (𝑣𝑉𝑉 = {𝑣}))
16 ax-1 6 . . . . . . . . . . 11 (𝑉 = {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1715, 16jaoi 855 . . . . . . . . . 10 ((𝑉 = ∅ ∨ 𝑉 = {𝑣}) → (𝑣𝑉𝑉 = {𝑣}))
1812, 17sylbi 216 . . . . . . . . 9 (𝑉 ⊆ {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1911, 18sylbir 234 . . . . . . . 8 ((𝑉 ∖ {𝑣}) = ∅ → (𝑣𝑉𝑉 = {𝑣}))
2010, 19syl 17 . . . . . . 7 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑣𝑉𝑉 = {𝑣}))
2120impcom 408 . . . . . 6 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → 𝑉 = {𝑣})
22 vsnid 4664 . . . . . . . 8 𝑣 ∈ {𝑣}
23 eleq2 2822 . . . . . . . 8 (𝑉 = {𝑣} → (𝑣𝑉𝑣 ∈ {𝑣}))
2422, 23mpbiri 257 . . . . . . 7 (𝑉 = {𝑣} → 𝑣𝑉)
25 ralel 3064 . . . . . . . 8 𝑛 ∈ ∅ 𝑛 ∈ ∅
26 difeq1 4114 . . . . . . . . . 10 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ({𝑣} ∖ {𝑣}))
27 difid 4369 . . . . . . . . . 10 ({𝑣} ∖ {𝑣}) = ∅
2826, 27eqtrdi 2788 . . . . . . . . 9 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ∅)
2928raleqdv 3325 . . . . . . . 8 (𝑉 = {𝑣} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ ∅))
3025, 29mpbiri 257 . . . . . . 7 (𝑉 = {𝑣} → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)
3124, 30jca 512 . . . . . 6 (𝑉 = {𝑣} → (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
3221, 31impbii 208 . . . . 5 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣})
3332a1i 11 . . . 4 (𝐸 = ∅ → ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣}))
3433exbidv 1924 . . 3 (𝐸 = ∅ → (∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ ∃𝑣 𝑉 = {𝑣}))
35 isuvtx.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
3635eqeq1i 2737 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
37 nbgr0edg 28603 . . . . . . 7 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3836, 37sylbi 216 . . . . . 6 (𝐸 = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3938eleq2d 2819 . . . . 5 (𝐸 = ∅ → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ ∅))
4039rexralbidv 3220 . . . 4 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
41 df-rex 3071 . . . 4 (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
4240, 41bitrdi 286 . . 3 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)))
431fvexi 6902 . . . 4 𝑉 ∈ V
44 hash1snb 14375 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4543, 44mp1i 13 . . 3 (𝐸 = ∅ → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4634, 42, 453bitr4d 310 . 2 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (♯‘𝑉) = 1))
474, 6, 463bitrd 304 1 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  cdif 3944  wss 3947  c0 4321  {csn 4627  cfv 6540  (class class class)co 7405  1c1 11107  chash 14286  Vtxcvtx 28245  Edgcedg 28296   NeighbVtx cnbgr 28578  UnivVtxcuvtx 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-nbgr 28579  df-uvtx 28632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator