MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvtx01vtx Structured version   Visualization version   GIF version

Theorem uvtx01vtx 29370
Description: If a graph/class has no edges, it has universal vertices if and only if it has exactly one vertex. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 30-Oct-2020.) (Revised by AV, 14-Feb-2022.)
Hypotheses
Ref Expression
uvtxel.v 𝑉 = (Vtx‘𝐺)
isuvtx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uvtx01vtx (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))

Proof of Theorem uvtx01vtx
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvtxel.v . . . . 5 𝑉 = (Vtx‘𝐺)
21uvtxval 29360 . . . 4 (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)}
32a1i 11 . . 3 (𝐸 = ∅ → (UnivVtx‘𝐺) = {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)})
43neeq1d 2987 . 2 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ {𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅))
5 rabn0 4334 . . 3 ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣))
65a1i 11 . 2 (𝐸 = ∅ → ({𝑣𝑉 ∣ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)} ≠ ∅ ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
7 falseral0 4461 . . . . . . . . . 10 ((∀𝑛 ¬ 𝑛 ∈ ∅ ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → (𝑉 ∖ {𝑣}) = ∅)
87ex 412 . . . . . . . . 9 (∀𝑛 ¬ 𝑛 ∈ ∅ → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅))
9 noel 4283 . . . . . . . . 9 ¬ 𝑛 ∈ ∅
108, 9mpg 1798 . . . . . . . 8 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑉 ∖ {𝑣}) = ∅)
11 ssdif0 4311 . . . . . . . . 9 (𝑉 ⊆ {𝑣} ↔ (𝑉 ∖ {𝑣}) = ∅)
12 sssn 4773 . . . . . . . . . 10 (𝑉 ⊆ {𝑣} ↔ (𝑉 = ∅ ∨ 𝑉 = {𝑣}))
13 ne0i 4286 . . . . . . . . . . . 12 (𝑣𝑉𝑉 ≠ ∅)
14 eqneqall 2939 . . . . . . . . . . . 12 (𝑉 = ∅ → (𝑉 ≠ ∅ → 𝑉 = {𝑣}))
1513, 14syl5 34 . . . . . . . . . . 11 (𝑉 = ∅ → (𝑣𝑉𝑉 = {𝑣}))
16 ax-1 6 . . . . . . . . . . 11 (𝑉 = {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1715, 16jaoi 857 . . . . . . . . . 10 ((𝑉 = ∅ ∨ 𝑉 = {𝑣}) → (𝑣𝑉𝑉 = {𝑣}))
1812, 17sylbi 217 . . . . . . . . 9 (𝑉 ⊆ {𝑣} → (𝑣𝑉𝑉 = {𝑣}))
1911, 18sylbir 235 . . . . . . . 8 ((𝑉 ∖ {𝑣}) = ∅ → (𝑣𝑉𝑉 = {𝑣}))
2010, 19syl 17 . . . . . . 7 (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ → (𝑣𝑉𝑉 = {𝑣}))
2120impcom 407 . . . . . 6 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) → 𝑉 = {𝑣})
22 vsnid 4611 . . . . . . . 8 𝑣 ∈ {𝑣}
23 eleq2 2820 . . . . . . . 8 (𝑉 = {𝑣} → (𝑣𝑉𝑣 ∈ {𝑣}))
2422, 23mpbiri 258 . . . . . . 7 (𝑉 = {𝑣} → 𝑣𝑉)
25 ralel 3050 . . . . . . . 8 𝑛 ∈ ∅ 𝑛 ∈ ∅
26 difeq1 4064 . . . . . . . . . 10 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ({𝑣} ∖ {𝑣}))
27 difid 4321 . . . . . . . . . 10 ({𝑣} ∖ {𝑣}) = ∅
2826, 27eqtrdi 2782 . . . . . . . . 9 (𝑉 = {𝑣} → (𝑉 ∖ {𝑣}) = ∅)
2928raleqdv 3292 . . . . . . . 8 (𝑉 = {𝑣} → (∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∀𝑛 ∈ ∅ 𝑛 ∈ ∅))
3025, 29mpbiri 258 . . . . . . 7 (𝑉 = {𝑣} → ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)
3124, 30jca 511 . . . . . 6 (𝑉 = {𝑣} → (𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
3221, 31impbii 209 . . . . 5 ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣})
3332a1i 11 . . . 4 (𝐸 = ∅ → ((𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ 𝑉 = {𝑣}))
3433exbidv 1922 . . 3 (𝐸 = ∅ → (∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅) ↔ ∃𝑣 𝑉 = {𝑣}))
35 isuvtx.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
3635eqeq1i 2736 . . . . . . 7 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
37 nbgr0edg 29330 . . . . . . 7 ((Edg‘𝐺) = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3836, 37sylbi 217 . . . . . 6 (𝐸 = ∅ → (𝐺 NeighbVtx 𝑣) = ∅)
3938eleq2d 2817 . . . . 5 (𝐸 = ∅ → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ ∅))
4039rexralbidv 3198 . . . 4 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
41 df-rex 3057 . . . 4 (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅ ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅))
4240, 41bitrdi 287 . . 3 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∃𝑣(𝑣𝑉 ∧ ∀𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ ∅)))
431fvexi 6831 . . . 4 𝑉 ∈ V
44 hash1snb 14321 . . . 4 (𝑉 ∈ V → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4543, 44mp1i 13 . . 3 (𝐸 = ∅ → ((♯‘𝑉) = 1 ↔ ∃𝑣 𝑉 = {𝑣}))
4634, 42, 453bitr4d 311 . 2 (𝐸 = ∅ → (∃𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (♯‘𝑉) = 1))
474, 6, 463bitrd 305 1 (𝐸 = ∅ → ((UnivVtx‘𝐺) ≠ ∅ ↔ (♯‘𝑉) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  c0 4278  {csn 4571  cfv 6476  (class class class)co 7341  1c1 11002  chash 14232  Vtxcvtx 28969  Edgcedg 29020   NeighbVtx cnbgr 29305  UnivVtxcuvtx 29358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-hash 14233  df-nbgr 29306  df-uvtx 29359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator