Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcosslem Structured version   Visualization version   GIF version

Theorem refrelcosslem 38460
Description: Lemma for the left side of the refrelcoss3 38461 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.)
Assertion
Ref Expression
refrelcosslem 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥

Proof of Theorem refrelcosslem
StepHypRef Expression
1 ralel 3048 . 2 𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅
2 eldmcoss2 38457 . . . 4 (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥))
32elv 3455 . . 3 (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
43ralbii 3076 . 2 (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
51, 4mpbi 230 1 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wral 3045  Vcvv 3450   class class class wbr 5110  dom cdm 5641  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-coss 38409
This theorem is referenced by:  refrelcoss3  38461  eqvrelcoss3  38616
  Copyright terms: Public domain W3C validator