Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcosslem Structured version   Visualization version   GIF version

Theorem refrelcosslem 36486
Description: Lemma for the left side of the refrelcoss3 36487 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.)
Assertion
Ref Expression
refrelcosslem 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥

Proof of Theorem refrelcosslem
StepHypRef Expression
1 ralel 3075 . 2 𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅
2 eldmcoss2 36483 . . . 4 (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥))
32elv 3429 . . 3 (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
43ralbii 3091 . 2 (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
51, 4mpbi 233 1 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2112  wral 3064  Vcvv 3423   class class class wbr 5070  dom cdm 5579  ccoss 36239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3069  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-coss 36443
This theorem is referenced by:  refrelcoss3  36487  eqvrelcoss3  36637
  Copyright terms: Public domain W3C validator