Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcosslem Structured version   Visualization version   GIF version

Theorem refrelcosslem 37986
Description: Lemma for the left side of the refrelcoss3 37987 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.)
Assertion
Ref Expression
refrelcosslem 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥

Proof of Theorem refrelcosslem
StepHypRef Expression
1 ralel 3054 . 2 𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅
2 eldmcoss2 37983 . . . 4 (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥))
32elv 3469 . . 3 (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
43ralbii 3083 . 2 (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
51, 4mpbi 229 1 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2098  wral 3051  Vcvv 3463   class class class wbr 5144  dom cdm 5673  ccoss 37701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5145  df-opab 5207  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-coss 37935
This theorem is referenced by:  refrelcoss3  37987  eqvrelcoss3  38142
  Copyright terms: Public domain W3C validator