Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcosslem | Structured version Visualization version GIF version |
Description: Lemma for the left side of the refrelcoss3 36575 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
Ref | Expression |
---|---|
refrelcosslem | ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralel 3077 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 | |
2 | eldmcoss2 36571 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥)) | |
3 | 2 | elv 3437 | . . 3 ⊢ (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥) |
4 | 3 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) |
5 | 1, 4 | mpbi 229 | 1 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 class class class wbr 5079 dom cdm 5589 ≀ ccoss 36327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-coss 36531 |
This theorem is referenced by: refrelcoss3 36575 eqvrelcoss3 36725 |
Copyright terms: Public domain | W3C validator |