Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcosslem Structured version   Visualization version   GIF version

Theorem refrelcosslem 38418
Description: Lemma for the left side of the refrelcoss3 38419 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.)
Assertion
Ref Expression
refrelcosslem 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥

Proof of Theorem refrelcosslem
StepHypRef Expression
1 ralel 3070 . 2 𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅
2 eldmcoss2 38415 . . . 4 (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥))
32elv 3493 . . 3 (𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
43ralbii 3099 . 2 (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
51, 4mpbi 230 1 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wral 3067  Vcvv 3488   class class class wbr 5166  dom cdm 5700  ccoss 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-coss 38367
This theorem is referenced by:  refrelcoss3  38419  eqvrelcoss3  38574
  Copyright terms: Public domain W3C validator