Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcosslem | Structured version Visualization version GIF version |
Description: Lemma for the left side of the refrelcoss3 36487 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
Ref | Expression |
---|---|
refrelcosslem | ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralel 3075 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 | |
2 | eldmcoss2 36483 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥)) | |
3 | 2 | elv 3429 | . . 3 ⊢ (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥) |
4 | 3 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) |
5 | 1, 4 | mpbi 233 | 1 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2112 ∀wral 3064 Vcvv 3423 class class class wbr 5070 dom cdm 5579 ≀ ccoss 36239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-coss 36443 |
This theorem is referenced by: refrelcoss3 36487 eqvrelcoss3 36637 |
Copyright terms: Public domain | W3C validator |