| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcosslem | Structured version Visualization version GIF version | ||
| Description: Lemma for the left side of the refrelcoss3 38575 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
| Ref | Expression |
|---|---|
| refrelcosslem | ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralel 3050 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 | |
| 2 | eldmcoss2 38571 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥)) | |
| 3 | 2 | elv 3441 | . . 3 ⊢ (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥) |
| 4 | 3 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 class class class wbr 5089 dom cdm 5614 ≀ ccoss 38232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-coss 38523 |
| This theorem is referenced by: refrelcoss3 38575 eqvrelcoss3 38724 |
| Copyright terms: Public domain | W3C validator |