![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcosslem | Structured version Visualization version GIF version |
Description: Lemma for the left side of the refrelcoss3 38419 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
Ref | Expression |
---|---|
refrelcosslem | ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralel 3070 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 | |
2 | eldmcoss2 38415 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥)) | |
3 | 2 | elv 3493 | . . 3 ⊢ (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥) |
4 | 3 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) |
5 | 1, 4 | mpbi 230 | 1 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 dom cdm 5700 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-coss 38367 |
This theorem is referenced by: refrelcoss3 38419 eqvrelcoss3 38574 |
Copyright terms: Public domain | W3C validator |