| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcosslem | Structured version Visualization version GIF version | ||
| Description: Lemma for the left side of the refrelcoss3 38427 reflexivity theorem. (Contributed by Peter Mazsa, 1-Apr-2019.) |
| Ref | Expression |
|---|---|
| refrelcosslem | ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralel 3054 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 | |
| 2 | eldmcoss2 38423 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥)) | |
| 3 | 2 | elv 3464 | . . 3 ⊢ (𝑥 ∈ dom ≀ 𝑅 ↔ 𝑥 ≀ 𝑅𝑥) |
| 4 | 3 | ralbii 3082 | . 2 ⊢ (∀𝑥 ∈ dom ≀ 𝑅𝑥 ∈ dom ≀ 𝑅 ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) |
| 5 | 1, 4 | mpbi 230 | 1 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 class class class wbr 5119 dom cdm 5654 ≀ ccoss 38145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-coss 38375 |
| This theorem is referenced by: refrelcoss3 38427 eqvrelcoss3 38582 |
| Copyright terms: Public domain | W3C validator |