MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsproplem14 Structured version   Visualization version   GIF version

Theorem mulsproplem14 28032
Description: Lemma for surreal multiplication. Finally, we remove the restriction on 𝐸 and 𝐹 from mulsproplem12 28030 and mulsproplem13 28031. This completes the induction on surreal multiplication. mulsprop 28033 brings all this together technically. (Contributed by Scott Fenton, 5-Mar-2025.)
Hypotheses
Ref Expression
mulsproplem.1 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
mulsproplem.2 (𝜑𝐶 No )
mulsproplem.3 (𝜑𝐷 No )
mulsproplem.4 (𝜑𝐸 No )
mulsproplem.5 (𝜑𝐹 No )
mulsproplem.6 (𝜑𝐶 <s 𝐷)
mulsproplem.7 (𝜑𝐸 <s 𝐹)
Assertion
Ref Expression
mulsproplem14 (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐸,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝐹,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓
Allowed substitution hints:   𝜑(𝑒,𝑓,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem mulsproplem14
Dummy variables 𝑔 𝑖 𝑗 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulsproplem.1 . . . 4 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
21adantr 480 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
3 mulsproplem.2 . . . 4 (𝜑𝐶 No )
43adantr 480 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → 𝐶 No )
5 mulsproplem.3 . . . 4 (𝜑𝐷 No )
65adantr 480 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → 𝐷 No )
7 mulsproplem.4 . . . 4 (𝜑𝐸 No )
87adantr 480 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → 𝐸 No )
9 mulsproplem.5 . . . 4 (𝜑𝐹 No )
109adantr 480 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → 𝐹 No )
11 mulsproplem.6 . . . 4 (𝜑𝐶 <s 𝐷)
1211adantr 480 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → 𝐶 <s 𝐷)
13 mulsproplem.7 . . . 4 (𝜑𝐸 <s 𝐹)
1413adantr 480 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → 𝐸 <s 𝐹)
15 simpr 484 . . 3 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)))
162, 4, 6, 8, 10, 12, 14, 15mulsproplem13 28031 . 2 ((𝜑 ∧ (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
177adantr 480 . . . 4 ((𝜑 ∧ ( bday 𝐸) = ( bday 𝐹)) → 𝐸 No )
189adantr 480 . . . 4 ((𝜑 ∧ ( bday 𝐸) = ( bday 𝐹)) → 𝐹 No )
19 simpr 484 . . . 4 ((𝜑 ∧ ( bday 𝐸) = ( bday 𝐹)) → ( bday 𝐸) = ( bday 𝐹))
2013adantr 480 . . . 4 ((𝜑 ∧ ( bday 𝐸) = ( bday 𝐹)) → 𝐸 <s 𝐹)
21 nodense 27604 . . . 4 (((𝐸 No 𝐹 No ) ∧ (( bday 𝐸) = ( bday 𝐹) ∧ 𝐸 <s 𝐹)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹))
2217, 18, 19, 20, 21syl22anc 838 . . 3 ((𝜑 ∧ ( bday 𝐸) = ( bday 𝐹)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹))
23 unidm 4120 . . . . . . . . . . . . . . . . 17 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))
24 unidm 4120 . . . . . . . . . . . . . . . . 17 ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) = (( bday ‘ 0s ) +no ( bday ‘ 0s ))
25 bday0s 27740 . . . . . . . . . . . . . . . . . . 19 ( bday ‘ 0s ) = ∅
2625, 25oveq12i 7399 . . . . . . . . . . . . . . . . . 18 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = (∅ +no ∅)
27 0elon 6387 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ On
28 naddrid 8647 . . . . . . . . . . . . . . . . . . 19 (∅ ∈ On → (∅ +no ∅) = ∅)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . . . 18 (∅ +no ∅) = ∅
3026, 29eqtri 2752 . . . . . . . . . . . . . . . . 17 (( bday ‘ 0s ) +no ( bday ‘ 0s )) = ∅
3123, 24, 303eqtri 2756 . . . . . . . . . . . . . . . 16 (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s )))) = ∅
3231uneq2i 4128 . . . . . . . . . . . . . . 15 ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝐷) +no ( bday 𝐸)) ∪ ∅)
33 un0 4357 . . . . . . . . . . . . . . 15 ((( bday 𝐷) +no ( bday 𝐸)) ∪ ∅) = (( bday 𝐷) +no ( bday 𝐸))
3432, 33eqtri 2752 . . . . . . . . . . . . . 14 ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝐷) +no ( bday 𝐸))
35 ssun2 4142 . . . . . . . . . . . . . . . 16 (( bday 𝐷) +no ( bday 𝐸)) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))
36 ssun2 4142 . . . . . . . . . . . . . . . 16 ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
3735, 36sstri 3956 . . . . . . . . . . . . . . 15 (( bday 𝐷) +no ( bday 𝐸)) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
38 ssun2 4142 . . . . . . . . . . . . . . 15 (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
3937, 38sstri 3956 . . . . . . . . . . . . . 14 (( bday 𝐷) +no ( bday 𝐸)) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
4034, 39eqsstri 3993 . . . . . . . . . . . . 13 ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
4140sseli 3942 . . . . . . . . . . . 12 (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
4241imim1i 63 . . . . . . . . . . 11 ((((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
43426ralimi 3107 . . . . . . . . . 10 (∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
441, 43syl 17 . . . . . . . . 9 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
4544, 5, 7mulsproplem11 28029 . . . . . . . 8 (𝜑 → (𝐷 ·s 𝐸) ∈ No )
4631uneq2i 4128 . . . . . . . . . . . . . . 15 ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝐶) +no ( bday 𝐸)) ∪ ∅)
47 un0 4357 . . . . . . . . . . . . . . 15 ((( bday 𝐶) +no ( bday 𝐸)) ∪ ∅) = (( bday 𝐶) +no ( bday 𝐸))
4846, 47eqtri 2752 . . . . . . . . . . . . . 14 ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝐶) +no ( bday 𝐸))
49 ssun1 4141 . . . . . . . . . . . . . . . 16 (( bday 𝐶) +no ( bday 𝐸)) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹)))
50 ssun1 4141 . . . . . . . . . . . . . . . 16 ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
5149, 50sstri 3956 . . . . . . . . . . . . . . 15 (( bday 𝐶) +no ( bday 𝐸)) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
5251, 38sstri 3956 . . . . . . . . . . . . . 14 (( bday 𝐶) +no ( bday 𝐸)) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
5348, 52eqsstri 3993 . . . . . . . . . . . . 13 ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
5453sseli 3942 . . . . . . . . . . . 12 (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
5554imim1i 63 . . . . . . . . . . 11 ((((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
56556ralimi 3107 . . . . . . . . . 10 (∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
571, 56syl 17 . . . . . . . . 9 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
5857, 3, 7mulsproplem11 28029 . . . . . . . 8 (𝜑 → (𝐶 ·s 𝐸) ∈ No )
5945, 58subscld 27967 . . . . . . 7 (𝜑 → ((𝐷 ·s 𝐸) -s (𝐶 ·s 𝐸)) ∈ No )
6059adantr 480 . . . . . 6 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐷 ·s 𝐸) -s (𝐶 ·s 𝐸)) ∈ No )
6144adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
625adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝐷 No )
63 simprr1 1222 . . . . . . . . . 10 ((( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹))) → ( bday 𝑥) ∈ ( bday 𝐸))
6463adantl 481 . . . . . . . . 9 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ( bday 𝑥) ∈ ( bday 𝐸))
65 bdayelon 27688 . . . . . . . . . 10 ( bday 𝐸) ∈ On
66 simprrl 780 . . . . . . . . . 10 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝑥 No )
67 oldbday 27812 . . . . . . . . . 10 ((( bday 𝐸) ∈ On ∧ 𝑥 No ) → (𝑥 ∈ ( O ‘( bday 𝐸)) ↔ ( bday 𝑥) ∈ ( bday 𝐸)))
6865, 66, 67sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (𝑥 ∈ ( O ‘( bday 𝐸)) ↔ ( bday 𝑥) ∈ ( bday 𝐸)))
6964, 68mpbird 257 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝑥 ∈ ( O ‘( bday 𝐸)))
7061, 62, 69mulsproplem3 28021 . . . . . . 7 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (𝐷 ·s 𝑥) ∈ No )
7157adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
723adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝐶 No )
7371, 72, 69mulsproplem3 28021 . . . . . . 7 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (𝐶 ·s 𝑥) ∈ No )
7470, 73subscld 27967 . . . . . 6 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐷 ·s 𝑥) -s (𝐶 ·s 𝑥)) ∈ No )
7531uneq2i 4128 . . . . . . . . . . . . . . 15 ((( bday 𝐷) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝐷) +no ( bday 𝐹)) ∪ ∅)
76 un0 4357 . . . . . . . . . . . . . . 15 ((( bday 𝐷) +no ( bday 𝐹)) ∪ ∅) = (( bday 𝐷) +no ( bday 𝐹))
7775, 76eqtri 2752 . . . . . . . . . . . . . 14 ((( bday 𝐷) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝐷) +no ( bday 𝐹))
78 ssun2 4142 . . . . . . . . . . . . . . . 16 (( bday 𝐷) +no ( bday 𝐹)) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹)))
7978, 50sstri 3956 . . . . . . . . . . . . . . 15 (( bday 𝐷) +no ( bday 𝐹)) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
8079, 38sstri 3956 . . . . . . . . . . . . . 14 (( bday 𝐷) +no ( bday 𝐹)) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
8177, 80eqsstri 3993 . . . . . . . . . . . . 13 ((( bday 𝐷) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
8281sseli 3942 . . . . . . . . . . . 12 (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
8382imim1i 63 . . . . . . . . . . 11 ((((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
84836ralimi 3107 . . . . . . . . . 10 (∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
851, 84syl 17 . . . . . . . . 9 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐷) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
8685, 5, 9mulsproplem11 28029 . . . . . . . 8 (𝜑 → (𝐷 ·s 𝐹) ∈ No )
8731uneq2i 4128 . . . . . . . . . . . . . . 15 ((( bday 𝐶) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = ((( bday 𝐶) +no ( bday 𝐹)) ∪ ∅)
88 un0 4357 . . . . . . . . . . . . . . 15 ((( bday 𝐶) +no ( bday 𝐹)) ∪ ∅) = (( bday 𝐶) +no ( bday 𝐹))
8987, 88eqtri 2752 . . . . . . . . . . . . . 14 ((( bday 𝐶) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) = (( bday 𝐶) +no ( bday 𝐹))
90 ssun1 4141 . . . . . . . . . . . . . . . 16 (( bday 𝐶) +no ( bday 𝐹)) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))
9190, 36sstri 3956 . . . . . . . . . . . . . . 15 (( bday 𝐶) +no ( bday 𝐹)) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
9291, 38sstri 3956 . . . . . . . . . . . . . 14 (( bday 𝐶) +no ( bday 𝐹)) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
9389, 92eqsstri 3993 . . . . . . . . . . . . 13 ((( bday 𝐶) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
9493sseli 3942 . . . . . . . . . . . 12 (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
9594imim1i 63 . . . . . . . . . . 11 ((((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
96956ralimi 3107 . . . . . . . . . 10 (∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))) → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
971, 96syl 17 . . . . . . . . 9 (𝜑 → ∀𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No (((( bday 𝑎) +no ( bday 𝑏)) ∪ (((( bday 𝑐) +no ( bday 𝑒)) ∪ (( bday 𝑑) +no ( bday 𝑓))) ∪ ((( bday 𝑐) +no ( bday 𝑓)) ∪ (( bday 𝑑) +no ( bday 𝑒))))) ∈ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))) ∪ ((( bday ‘ 0s ) +no ( bday ‘ 0s )) ∪ (( bday ‘ 0s ) +no ( bday ‘ 0s ))))) → ((𝑎 ·s 𝑏) ∈ No ∧ ((𝑐 <s 𝑑𝑒 <s 𝑓) → ((𝑐 ·s 𝑓) -s (𝑐 ·s 𝑒)) <s ((𝑑 ·s 𝑓) -s (𝑑 ·s 𝑒))))))
9897, 3, 9mulsproplem11 28029 . . . . . . . 8 (𝜑 → (𝐶 ·s 𝐹) ∈ No )
9986, 98subscld 27967 . . . . . . 7 (𝜑 → ((𝐷 ·s 𝐹) -s (𝐶 ·s 𝐹)) ∈ No )
10099adantr 480 . . . . . 6 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐷 ·s 𝐹) -s (𝐶 ·s 𝐹)) ∈ No )
1011mulsproplemcbv 28018 . . . . . . . . . 10 (𝜑 → ∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))))
102101adantr 480 . . . . . . . . 9 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))))
103 onelss 6374 . . . . . . . . . . . . . . . . . 18 (( bday 𝐸) ∈ On → (( bday 𝑥) ∈ ( bday 𝐸) → ( bday 𝑥) ⊆ ( bday 𝐸)))
10465, 64, 103mpsyl 68 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ( bday 𝑥) ⊆ ( bday 𝐸))
105 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ( bday 𝐸) = ( bday 𝐹))
106104, 105sseqtrd 3983 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ( bday 𝑥) ⊆ ( bday 𝐹))
107 bdayelon 27688 . . . . . . . . . . . . . . . . 17 ( bday 𝑥) ∈ On
108 bdayelon 27688 . . . . . . . . . . . . . . . . 17 ( bday 𝐹) ∈ On
109 bdayelon 27688 . . . . . . . . . . . . . . . . 17 ( bday 𝐷) ∈ On
110 naddss2 8654 . . . . . . . . . . . . . . . . 17 ((( bday 𝑥) ∈ On ∧ ( bday 𝐹) ∈ On ∧ ( bday 𝐷) ∈ On) → (( bday 𝑥) ⊆ ( bday 𝐹) ↔ (( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐹))))
111107, 108, 109, 110mp3an 1463 . . . . . . . . . . . . . . . 16 (( bday 𝑥) ⊆ ( bday 𝐹) ↔ (( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐹)))
112106, 111sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐹)))
113 unss2 4150 . . . . . . . . . . . . . . 15 ((( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐹)) → ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))))
114112, 113syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))))
115 bdayelon 27688 . . . . . . . . . . . . . . . . 17 ( bday 𝐶) ∈ On
116 naddss2 8654 . . . . . . . . . . . . . . . . 17 ((( bday 𝑥) ∈ On ∧ ( bday 𝐹) ∈ On ∧ ( bday 𝐶) ∈ On) → (( bday 𝑥) ⊆ ( bday 𝐹) ↔ (( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐹))))
117107, 108, 115, 116mp3an 1463 . . . . . . . . . . . . . . . 16 (( bday 𝑥) ⊆ ( bday 𝐹) ↔ (( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐹)))
118106, 117sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐹)))
119 unss1 4148 . . . . . . . . . . . . . . 15 ((( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐹)) → ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
120118, 119syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
121 unss12 4151 . . . . . . . . . . . . . 14 ((((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∧ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) → (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
122114, 120, 121syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
123 unss2 4150 . . . . . . . . . . . . 13 ((((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
124122, 123syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
125124sseld 3945 . . . . . . . . . . 11 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
126125imim1d 82 . . . . . . . . . 10 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))) → (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘)))))))
127126ralimd6v 3190 . . . . . . . . 9 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))) → ∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘)))))))
128102, 127mpd 15 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ∪ ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))))
1297adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝐸 No )
13011adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝐶 <s 𝐷)
131 simprr2 1223 . . . . . . . . 9 ((( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹))) → 𝐸 <s 𝑥)
132131adantl 481 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝐸 <s 𝑥)
13364olcd 874 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (( bday 𝐸) ∈ ( bday 𝑥) ∨ ( bday 𝑥) ∈ ( bday 𝐸)))
134128, 72, 62, 129, 66, 130, 132, 133mulsproplem13 28031 . . . . . . 7 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐶 ·s 𝑥) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝑥) -s (𝐷 ·s 𝐸)))
13545adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (𝐷 ·s 𝐸) ∈ No )
13658adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (𝐶 ·s 𝐸) ∈ No )
137135, 70, 136, 73sltsubsub3bd 27989 . . . . . . 7 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (((𝐷 ·s 𝐸) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝑥) -s (𝐶 ·s 𝑥)) ↔ ((𝐶 ·s 𝑥) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝑥) -s (𝐷 ·s 𝐸))))
138134, 137mpbird 257 . . . . . 6 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐷 ·s 𝐸) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝑥) -s (𝐶 ·s 𝑥)))
139 naddss2 8654 . . . . . . . . . . . . . . . . 17 ((( bday 𝑥) ∈ On ∧ ( bday 𝐸) ∈ On ∧ ( bday 𝐶) ∈ On) → (( bday 𝑥) ⊆ ( bday 𝐸) ↔ (( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐸))))
140107, 65, 115, 139mp3an 1463 . . . . . . . . . . . . . . . 16 (( bday 𝑥) ⊆ ( bday 𝐸) ↔ (( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐸)))
141104, 140sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐸)))
142 unss1 4148 . . . . . . . . . . . . . . 15 ((( bday 𝐶) +no ( bday 𝑥)) ⊆ (( bday 𝐶) +no ( bday 𝐸)) → ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))))
143141, 142syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))))
144 naddss2 8654 . . . . . . . . . . . . . . . . 17 ((( bday 𝑥) ∈ On ∧ ( bday 𝐸) ∈ On ∧ ( bday 𝐷) ∈ On) → (( bday 𝑥) ⊆ ( bday 𝐸) ↔ (( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐸))))
145107, 65, 109, 144mp3an 1463 . . . . . . . . . . . . . . . 16 (( bday 𝑥) ⊆ ( bday 𝐸) ↔ (( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐸)))
146104, 145sylib 218 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐸)))
147 unss2 4150 . . . . . . . . . . . . . . 15 ((( bday 𝐷) +no ( bday 𝑥)) ⊆ (( bday 𝐷) +no ( bday 𝐸)) → ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
148146, 147syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))
149 unss12 4151 . . . . . . . . . . . . . 14 ((((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ⊆ ((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∧ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))) ⊆ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) → (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥)))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
150143, 148, 149syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥)))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))
151 unss2 4150 . . . . . . . . . . . . 13 ((((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥)))) ⊆ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))) → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
152150, 151syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))))) ⊆ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))))
153152sseld 3945 . . . . . . . . . . 11 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))))) → ((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸)))))))
154153imim1d 82 . . . . . . . . . 10 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))) → (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘)))))))
155154ralimd6v 3190 . . . . . . . . 9 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝐸)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝐸))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))) → ∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘)))))))
156102, 155mpd 15 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ∀𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No (((( bday 𝑔) +no ( bday )) ∪ (((( bday 𝑖) +no ( bday 𝑘)) ∪ (( bday 𝑗) +no ( bday 𝑙))) ∪ ((( bday 𝑖) +no ( bday 𝑙)) ∪ (( bday 𝑗) +no ( bday 𝑘))))) ∈ ((( bday 𝐴) +no ( bday 𝐵)) ∪ (((( bday 𝐶) +no ( bday 𝑥)) ∪ (( bday 𝐷) +no ( bday 𝐹))) ∪ ((( bday 𝐶) +no ( bday 𝐹)) ∪ (( bday 𝐷) +no ( bday 𝑥))))) → ((𝑔 ·s ) ∈ No ∧ ((𝑖 <s 𝑗𝑘 <s 𝑙) → ((𝑖 ·s 𝑙) -s (𝑖 ·s 𝑘)) <s ((𝑗 ·s 𝑙) -s (𝑗 ·s 𝑘))))))
1579adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝐹 No )
158 simprr3 1224 . . . . . . . . 9 ((( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹))) → 𝑥 <s 𝐹)
159158adantl 481 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → 𝑥 <s 𝐹)
16064, 105eleqtrd 2830 . . . . . . . . 9 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ( bday 𝑥) ∈ ( bday 𝐹))
161160orcd 873 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (( bday 𝑥) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝑥)))
162156, 72, 62, 66, 157, 130, 159, 161mulsproplem13 28031 . . . . . . 7 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝑥)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝑥)))
16386adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (𝐷 ·s 𝐹) ∈ No )
16498adantr 480 . . . . . . . 8 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (𝐶 ·s 𝐹) ∈ No )
16570, 163, 73, 164sltsubsub3bd 27989 . . . . . . 7 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (((𝐷 ·s 𝑥) -s (𝐶 ·s 𝑥)) <s ((𝐷 ·s 𝐹) -s (𝐶 ·s 𝐹)) ↔ ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝑥)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝑥))))
166162, 165mpbird 257 . . . . . 6 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐷 ·s 𝑥) -s (𝐶 ·s 𝑥)) <s ((𝐷 ·s 𝐹) -s (𝐶 ·s 𝐹)))
16760, 74, 100, 138, 166slttrd 27671 . . . . 5 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐷 ·s 𝐸) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐶 ·s 𝐹)))
16845, 86, 58, 98sltsubsub3bd 27989 . . . . . 6 (𝜑 → (((𝐷 ·s 𝐸) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐶 ·s 𝐹)) ↔ ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))))
169168adantr 480 . . . . 5 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → (((𝐷 ·s 𝐸) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐶 ·s 𝐹)) ↔ ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸))))
170167, 169mpbid 232 . . . 4 ((𝜑 ∧ (( bday 𝐸) = ( bday 𝐹) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹)))) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
171170anassrs 467 . . 3 (((𝜑 ∧ ( bday 𝐸) = ( bday 𝐹)) ∧ (𝑥 No ∧ (( bday 𝑥) ∈ ( bday 𝐸) ∧ 𝐸 <s 𝑥𝑥 <s 𝐹))) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
17222, 171rexlimddv 3140 . 2 ((𝜑 ∧ ( bday 𝐸) = ( bday 𝐹)) → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
17365onordi 6445 . . . . 5 Ord ( bday 𝐸)
174108onordi 6445 . . . . 5 Ord ( bday 𝐹)
175 ordtri3or 6364 . . . . 5 ((Ord ( bday 𝐸) ∧ Ord ( bday 𝐹)) → (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐸) = ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)))
176173, 174, 175mp2an 692 . . . 4 (( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐸) = ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸))
177 df-3or 1087 . . . . 5 ((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐸) = ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)) ↔ ((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐸) = ( bday 𝐹)) ∨ ( bday 𝐹) ∈ ( bday 𝐸)))
178 or32 925 . . . . 5 (((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐸) = ( bday 𝐹)) ∨ ( bday 𝐹) ∈ ( bday 𝐸)) ↔ ((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)) ∨ ( bday 𝐸) = ( bday 𝐹)))
179177, 178bitri 275 . . . 4 ((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐸) = ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)) ↔ ((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)) ∨ ( bday 𝐸) = ( bday 𝐹)))
180176, 179mpbi 230 . . 3 ((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)) ∨ ( bday 𝐸) = ( bday 𝐹))
181180a1i 11 . 2 (𝜑 → ((( bday 𝐸) ∈ ( bday 𝐹) ∨ ( bday 𝐹) ∈ ( bday 𝐸)) ∨ ( bday 𝐸) = ( bday 𝐹)))
18216, 172, 181mpjaodan 960 1 (𝜑 → ((𝐶 ·s 𝐹) -s (𝐶 ·s 𝐸)) <s ((𝐷 ·s 𝐹) -s (𝐷 ·s 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cun 3912  wss 3914  c0 4296   class class class wbr 5107  Ord word 6331  Oncon0 6332  cfv 6511  (class class class)co 7387   +no cnadd 8629   No csur 27551   <s cslt 27552   bday cbday 27553   0s c0s 27734   O cold 27751   -s csubs 27926   ·s cmuls 28009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010
This theorem is referenced by:  mulsprop  28033
  Copyright terms: Public domain W3C validator