Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimdvva | Structured version Visualization version GIF version |
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1812). (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
ralimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdvva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdvva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | anassrs 471 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3108 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralimdva 3108 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ∀wral 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ral 3075 |
This theorem is referenced by: dedekindle 10842 islmhm2 19878 dmatscmcl 21203 cpmatacl 21416 cpmatinvcl 21417 mat2pmatf1 21429 pmatcollpw2lem 21477 tgpt0 22819 isngp4 23314 addcnlem 23565 c1lip3 24698 aalioulem2 25028 aalioulem5 25031 aalioulem6 25032 aaliou 25033 iscgrglt 26407 2pthfrgrrn 28166 2pthfrgrrn2 28167 equivbnd 35508 ghomco 35609 |
Copyright terms: Public domain | W3C validator |