![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdvva | Structured version Visualization version GIF version |
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1811). (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
ralimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdvva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdvva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3166 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralimdva 3166 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3061 |
This theorem is referenced by: ralimdvv 3205 dedekindle 11385 islmhm2 20882 dflidl2lem 21080 dflidl2rng 21119 isdomn4 21207 dmatscmcl 22325 cpmatacl 22538 cpmatinvcl 22539 mat2pmatf1 22551 pmatcollpw2lem 22599 tgpt0 23943 isngp4 24441 addcnlem 24700 c1lip3 25852 aalioulem2 26185 aalioulem5 26188 aalioulem6 26189 aaliou 26190 iscgrglt 28198 2pthfrgrrn 29968 2pthfrgrrn2 29969 equivbnd 37122 ghomco 37223 fcoresf1 46238 fullthinc 47828 |
Copyright terms: Public domain | W3C validator |