![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimdvva | Structured version Visualization version GIF version |
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1808). (Contributed by AV, 27-Nov-2019.) |
Ref | Expression |
---|---|
ralimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ralimdvva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimdvva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
3 | 2 | ralimdva 3173 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐵 𝜒)) |
4 | 3 | ralimdva 3173 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: ralimdvv 3214 dedekindle 11454 isdomn4 20738 islmhm2 21060 dflidl2rng 21251 dmatscmcl 22530 cpmatacl 22743 cpmatinvcl 22744 mat2pmatf1 22756 pmatcollpw2lem 22804 tgpt0 24148 isngp4 24646 addcnlem 24905 c1lip3 26058 aalioulem2 26393 aalioulem5 26396 aalioulem6 26397 aaliou 26398 iscgrglt 28540 2pthfrgrrn 30314 2pthfrgrrn2 30315 equivbnd 37750 ghomco 37851 fcoresf1 46984 fullthinc 48713 |
Copyright terms: Public domain | W3C validator |