| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdvva | Structured version Visualization version GIF version | ||
| Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1810). (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| ralimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdvva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdvva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3153 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralimdva 3153 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3053 |
| This theorem is referenced by: ralimdvvOLD 3195 dedekindle 11404 isdomn4 20681 islmhm2 21001 dflidl2rng 21184 dmatscmcl 22446 cpmatacl 22659 cpmatinvcl 22660 mat2pmatf1 22672 pmatcollpw2lem 22720 tgpt0 24062 isngp4 24556 addcnlem 24809 c1lip3 25961 aalioulem2 26298 aalioulem5 26301 aalioulem6 26302 aaliou 26303 iscgrglt 28498 2pthfrgrrn 30268 2pthfrgrrn2 30269 equivbnd 37819 ghomco 37920 fcoresf1 47065 fullthinc 49303 |
| Copyright terms: Public domain | W3C validator |