MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimdvva Structured version   Visualization version   GIF version

Theorem ralimdvva 3179
Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1811). (Contributed by AV, 27-Nov-2019.)
Hypothesis
Ref Expression
ralimdvva.1 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
ralimdvva (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝜑
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralimdvva
StepHypRef Expression
1 ralimdvva.1 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
21anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
32ralimdva 3144 . 2 ((𝜑𝑥𝐴) → (∀𝑦𝐵 𝜓 → ∀𝑦𝐵 𝜒))
43ralimdva 3144 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3048
This theorem is referenced by:  ralimdvvOLD  3182  dedekindle  11277  isdomn4  20631  islmhm2  20972  dflidl2rng  21155  dmatscmcl  22418  cpmatacl  22631  cpmatinvcl  22632  mat2pmatf1  22644  pmatcollpw2lem  22692  tgpt0  24034  isngp4  24527  addcnlem  24780  c1lip3  25931  aalioulem2  26268  aalioulem5  26271  aalioulem6  26272  aaliou  26273  iscgrglt  28492  2pthfrgrrn  30262  2pthfrgrrn2  30263  equivbnd  37840  ghomco  37941  fcoresf1  47179  fullthinc  49561
  Copyright terms: Public domain W3C validator