| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimdvva | Structured version Visualization version GIF version | ||
| Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1811). (Contributed by AV, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| ralimdvva.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ralimdvva | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimdvva.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝜓 → 𝜒)) | |
| 2 | 1 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) → (𝜓 → 𝜒)) |
| 3 | 2 | ralimdva 3144 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 𝜓 → ∀𝑦 ∈ 𝐵 𝜒)) |
| 4 | 3 | ralimdva 3144 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: ralimdvvOLD 3182 dedekindle 11277 isdomn4 20631 islmhm2 20972 dflidl2rng 21155 dmatscmcl 22418 cpmatacl 22631 cpmatinvcl 22632 mat2pmatf1 22644 pmatcollpw2lem 22692 tgpt0 24034 isngp4 24527 addcnlem 24780 c1lip3 25931 aalioulem2 26268 aalioulem5 26271 aalioulem6 26272 aaliou 26273 iscgrglt 28492 2pthfrgrrn 30262 2pthfrgrrn2 30263 equivbnd 37840 ghomco 37941 fcoresf1 47179 fullthinc 49561 |
| Copyright terms: Public domain | W3C validator |