Proof of Theorem re2luk2
Step | Hyp | Ref
| Expression |
1 | | rb-ax4 1759 |
. . . 4
⊢ (¬
(𝜑 ∨ 𝜑) ∨ 𝜑) |
2 | | rb-ax3 1758 |
. . . . . . 7
⊢ (¬
𝜑 ∨ (𝜑 ∨ 𝜑)) |
3 | 1, 2 | rbsyl 1760 |
. . . . . 6
⊢ (¬
𝜑 ∨ 𝜑) |
4 | | rb-ax4 1759 |
. . . . . . . . 9
⊢ (¬
(¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) ∨ ¬ ¬
𝜑) |
5 | | rb-ax3 1758 |
. . . . . . . . 9
⊢ (¬
¬ ¬ 𝜑 ∨ (¬
¬ 𝜑 ∨ ¬ ¬
𝜑)) |
6 | 4, 5 | rbsyl 1760 |
. . . . . . . 8
⊢ (¬
¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) |
7 | | rb-ax2 1757 |
. . . . . . . 8
⊢ (¬
(¬ ¬ ¬ 𝜑 ∨
¬ ¬ 𝜑) ∨ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑)) |
8 | 6, 7 | anmp 1755 |
. . . . . . 7
⊢ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑) |
9 | 8, 3 | rblem1 1761 |
. . . . . 6
⊢ (¬
(¬ 𝜑 ∨ 𝜑) ∨ (¬ ¬ ¬ 𝜑 ∨ 𝜑)) |
10 | 3, 9 | anmp 1755 |
. . . . 5
⊢ (¬
¬ ¬ 𝜑 ∨ 𝜑) |
11 | 10, 3 | rblem1 1761 |
. . . 4
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜑) ∨ (𝜑 ∨ 𝜑)) |
12 | 1, 11 | rbsyl 1760 |
. . 3
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜑) ∨ 𝜑) |
13 | | rb-imdf 1754 |
. . . 4
⊢ ¬
(¬ (¬ (¬ 𝜑 →
𝜑) ∨ (¬ ¬ 𝜑 ∨ 𝜑)) ∨ ¬ (¬ (¬ ¬ 𝜑 ∨ 𝜑) ∨ (¬ 𝜑 → 𝜑))) |
14 | 13 | rblem6 1766 |
. . 3
⊢ (¬
(¬ 𝜑 → 𝜑) ∨ (¬ ¬ 𝜑 ∨ 𝜑)) |
15 | 12, 14 | rbsyl 1760 |
. 2
⊢ (¬
(¬ 𝜑 → 𝜑) ∨ 𝜑) |
16 | | rb-imdf 1754 |
. . 3
⊢ ¬
(¬ (¬ ((¬ 𝜑
→ 𝜑) → 𝜑) ∨ (¬ (¬ 𝜑 → 𝜑) ∨ 𝜑)) ∨ ¬ (¬ (¬ (¬ 𝜑 → 𝜑) ∨ 𝜑) ∨ ((¬ 𝜑 → 𝜑) → 𝜑))) |
17 | 16 | rblem7 1767 |
. 2
⊢ (¬
(¬ (¬ 𝜑 → 𝜑) ∨ 𝜑) ∨ ((¬ 𝜑 → 𝜑) → 𝜑)) |
18 | 15, 17 | anmp 1755 |
1
⊢ ((¬
𝜑 → 𝜑) → 𝜑) |