Proof of Theorem re2luk2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rb-ax4 1754 | . . . 4
⊢ (¬
(𝜑 ∨ 𝜑) ∨ 𝜑) | 
| 2 |  | rb-ax3 1753 | . . . . . . 7
⊢ (¬
𝜑 ∨ (𝜑 ∨ 𝜑)) | 
| 3 | 1, 2 | rbsyl 1755 | . . . . . 6
⊢ (¬
𝜑 ∨ 𝜑) | 
| 4 |  | rb-ax4 1754 | . . . . . . . . 9
⊢ (¬
(¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) ∨ ¬ ¬
𝜑) | 
| 5 |  | rb-ax3 1753 | . . . . . . . . 9
⊢ (¬
¬ ¬ 𝜑 ∨ (¬
¬ 𝜑 ∨ ¬ ¬
𝜑)) | 
| 6 | 4, 5 | rbsyl 1755 | . . . . . . . 8
⊢ (¬
¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) | 
| 7 |  | rb-ax2 1752 | . . . . . . . 8
⊢ (¬
(¬ ¬ ¬ 𝜑 ∨
¬ ¬ 𝜑) ∨ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑)) | 
| 8 | 6, 7 | anmp 1750 | . . . . . . 7
⊢ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑) | 
| 9 | 8, 3 | rblem1 1756 | . . . . . 6
⊢ (¬
(¬ 𝜑 ∨ 𝜑) ∨ (¬ ¬ ¬ 𝜑 ∨ 𝜑)) | 
| 10 | 3, 9 | anmp 1750 | . . . . 5
⊢ (¬
¬ ¬ 𝜑 ∨ 𝜑) | 
| 11 | 10, 3 | rblem1 1756 | . . . 4
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜑) ∨ (𝜑 ∨ 𝜑)) | 
| 12 | 1, 11 | rbsyl 1755 | . . 3
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜑) ∨ 𝜑) | 
| 13 |  | rb-imdf 1749 | . . . 4
⊢  ¬
(¬ (¬ (¬ 𝜑 →
𝜑) ∨ (¬ ¬ 𝜑 ∨ 𝜑)) ∨ ¬ (¬ (¬ ¬ 𝜑 ∨ 𝜑) ∨ (¬ 𝜑 → 𝜑))) | 
| 14 | 13 | rblem6 1761 | . . 3
⊢ (¬
(¬ 𝜑 → 𝜑) ∨ (¬ ¬ 𝜑 ∨ 𝜑)) | 
| 15 | 12, 14 | rbsyl 1755 | . 2
⊢ (¬
(¬ 𝜑 → 𝜑) ∨ 𝜑) | 
| 16 |  | rb-imdf 1749 | . . 3
⊢  ¬
(¬ (¬ ((¬ 𝜑
→ 𝜑) → 𝜑) ∨ (¬ (¬ 𝜑 → 𝜑) ∨ 𝜑)) ∨ ¬ (¬ (¬ (¬ 𝜑 → 𝜑) ∨ 𝜑) ∨ ((¬ 𝜑 → 𝜑) → 𝜑))) | 
| 17 | 16 | rblem7 1762 | . 2
⊢ (¬
(¬ (¬ 𝜑 → 𝜑) ∨ 𝜑) ∨ ((¬ 𝜑 → 𝜑) → 𝜑)) | 
| 18 | 15, 17 | anmp 1750 | 1
⊢ ((¬
𝜑 → 𝜑) → 𝜑) |