Proof of Theorem re2luk2
| Step | Hyp | Ref
| Expression |
| 1 | | rb-ax4 1755 |
. . . 4
⊢ (¬
(𝜑 ∨ 𝜑) ∨ 𝜑) |
| 2 | | rb-ax3 1754 |
. . . . . . 7
⊢ (¬
𝜑 ∨ (𝜑 ∨ 𝜑)) |
| 3 | 1, 2 | rbsyl 1756 |
. . . . . 6
⊢ (¬
𝜑 ∨ 𝜑) |
| 4 | | rb-ax4 1755 |
. . . . . . . . 9
⊢ (¬
(¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) ∨ ¬ ¬
𝜑) |
| 5 | | rb-ax3 1754 |
. . . . . . . . 9
⊢ (¬
¬ ¬ 𝜑 ∨ (¬
¬ 𝜑 ∨ ¬ ¬
𝜑)) |
| 6 | 4, 5 | rbsyl 1756 |
. . . . . . . 8
⊢ (¬
¬ ¬ 𝜑 ∨ ¬
¬ 𝜑) |
| 7 | | rb-ax2 1753 |
. . . . . . . 8
⊢ (¬
(¬ ¬ ¬ 𝜑 ∨
¬ ¬ 𝜑) ∨ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑)) |
| 8 | 6, 7 | anmp 1751 |
. . . . . . 7
⊢ (¬
¬ 𝜑 ∨ ¬ ¬
¬ 𝜑) |
| 9 | 8, 3 | rblem1 1757 |
. . . . . 6
⊢ (¬
(¬ 𝜑 ∨ 𝜑) ∨ (¬ ¬ ¬ 𝜑 ∨ 𝜑)) |
| 10 | 3, 9 | anmp 1751 |
. . . . 5
⊢ (¬
¬ ¬ 𝜑 ∨ 𝜑) |
| 11 | 10, 3 | rblem1 1757 |
. . . 4
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜑) ∨ (𝜑 ∨ 𝜑)) |
| 12 | 1, 11 | rbsyl 1756 |
. . 3
⊢ (¬
(¬ ¬ 𝜑 ∨ 𝜑) ∨ 𝜑) |
| 13 | | rb-imdf 1750 |
. . . 4
⊢ ¬
(¬ (¬ (¬ 𝜑 →
𝜑) ∨ (¬ ¬ 𝜑 ∨ 𝜑)) ∨ ¬ (¬ (¬ ¬ 𝜑 ∨ 𝜑) ∨ (¬ 𝜑 → 𝜑))) |
| 14 | 13 | rblem6 1762 |
. . 3
⊢ (¬
(¬ 𝜑 → 𝜑) ∨ (¬ ¬ 𝜑 ∨ 𝜑)) |
| 15 | 12, 14 | rbsyl 1756 |
. 2
⊢ (¬
(¬ 𝜑 → 𝜑) ∨ 𝜑) |
| 16 | | rb-imdf 1750 |
. . 3
⊢ ¬
(¬ (¬ ((¬ 𝜑
→ 𝜑) → 𝜑) ∨ (¬ (¬ 𝜑 → 𝜑) ∨ 𝜑)) ∨ ¬ (¬ (¬ (¬ 𝜑 → 𝜑) ∨ 𝜑) ∨ ((¬ 𝜑 → 𝜑) → 𝜑))) |
| 17 | 16 | rblem7 1763 |
. 2
⊢ (¬
(¬ (¬ 𝜑 → 𝜑) ∨ 𝜑) ∨ ((¬ 𝜑 → 𝜑) → 𝜑)) |
| 18 | 15, 17 | anmp 1751 |
1
⊢ ((¬
𝜑 → 𝜑) → 𝜑) |