|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > re2luk3 | Structured version Visualization version GIF version | ||
| Description: luk-3 1656 derived from Russell-Bernays'. This theorem, along with re1axmp 1763, re2luk1 1764, and re2luk2 1765 shows that rb-ax1 1751, rb-ax2 1752, rb-ax3 1753, and rb-ax4 1754, along with anmp 1750, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| re2luk3 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rb-imdf 1749 | . . . 4 ⊢ ¬ (¬ (¬ (¬ 𝜑 → 𝜓) ∨ (¬ ¬ 𝜑 ∨ 𝜓)) ∨ ¬ (¬ (¬ ¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 → 𝜓))) | |
| 2 | 1 | rblem7 1762 | . . 3 ⊢ (¬ (¬ ¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 → 𝜓)) | 
| 3 | rb-ax4 1754 | . . . . . 6 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜑) ∨ ¬ 𝜑) | |
| 4 | rb-ax3 1753 | . . . . . 6 ⊢ (¬ ¬ 𝜑 ∨ (¬ 𝜑 ∨ ¬ 𝜑)) | |
| 5 | 3, 4 | rbsyl 1755 | . . . . 5 ⊢ (¬ ¬ 𝜑 ∨ ¬ 𝜑) | 
| 6 | rb-ax2 1752 | . . . . 5 ⊢ (¬ (¬ ¬ 𝜑 ∨ ¬ 𝜑) ∨ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
| 7 | 5, 6 | anmp 1750 | . . . 4 ⊢ (¬ 𝜑 ∨ ¬ ¬ 𝜑) | 
| 8 | rblem2 1757 | . . . 4 ⊢ (¬ (¬ 𝜑 ∨ ¬ ¬ 𝜑) ∨ (¬ 𝜑 ∨ (¬ ¬ 𝜑 ∨ 𝜓))) | |
| 9 | 7, 8 | anmp 1750 | . . 3 ⊢ (¬ 𝜑 ∨ (¬ ¬ 𝜑 ∨ 𝜓)) | 
| 10 | 2, 9 | rbsyl 1755 | . 2 ⊢ (¬ 𝜑 ∨ (¬ 𝜑 → 𝜓)) | 
| 11 | rb-imdf 1749 | . . 3 ⊢ ¬ (¬ (¬ (𝜑 → (¬ 𝜑 → 𝜓)) ∨ (¬ 𝜑 ∨ (¬ 𝜑 → 𝜓))) ∨ ¬ (¬ (¬ 𝜑 ∨ (¬ 𝜑 → 𝜓)) ∨ (𝜑 → (¬ 𝜑 → 𝜓)))) | |
| 12 | 11 | rblem7 1762 | . 2 ⊢ (¬ (¬ 𝜑 ∨ (¬ 𝜑 → 𝜓)) ∨ (𝜑 → (¬ 𝜑 → 𝜓))) | 
| 13 | 10, 12 | anmp 1750 | 1 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |