| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resinsnlem | Structured version Visualization version GIF version | ||
| Description: Lemma for resinsnALT 48756. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| resinsnlem.1 | ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) |
| resinsnlem.2 | ⊢ (¬ 𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| resinsnlem | ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resinsnlem.1 | . . . 4 ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) | |
| 2 | 1 | con2bid 354 | . . 3 ⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) |
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) |
| 4 | resinsnlem.2 | . . . 4 ⊢ (¬ 𝜑 → 𝜒) | |
| 5 | 4 | con1i 147 | . . 3 ⊢ (¬ 𝜒 → 𝜑) |
| 6 | 5, 2 | syl 17 | . . . 4 ⊢ (¬ 𝜒 → (𝜓 ↔ ¬ 𝜒)) |
| 7 | 6 | ibir 268 | . . 3 ⊢ (¬ 𝜒 → 𝜓) |
| 8 | 5, 7 | jca 511 | . 2 ⊢ (¬ 𝜒 → (𝜑 ∧ 𝜓)) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: resinsnALT 48756 |
| Copyright terms: Public domain | W3C validator |