Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resinsnlem Structured version   Visualization version   GIF version

Theorem resinsnlem 48744
Description: Lemma for resinsnALT 48746. (Contributed by Zhi Wang, 6-Oct-2025.)
Hypotheses
Ref Expression
resinsnlem.1 (𝜑 → (𝜒 ↔ ¬ 𝜓))
resinsnlem.2 𝜑𝜒)
Assertion
Ref Expression
resinsnlem ((𝜑𝜓) ↔ ¬ 𝜒)

Proof of Theorem resinsnlem
StepHypRef Expression
1 resinsnlem.1 . . . 4 (𝜑 → (𝜒 ↔ ¬ 𝜓))
21con2bid 354 . . 3 (𝜑 → (𝜓 ↔ ¬ 𝜒))
32biimpa 476 . 2 ((𝜑𝜓) → ¬ 𝜒)
4 resinsnlem.2 . . . 4 𝜑𝜒)
54con1i 147 . . 3 𝜒𝜑)
65, 2syl 17 . . . 4 𝜒 → (𝜓 ↔ ¬ 𝜒))
76ibir 268 . . 3 𝜒𝜓)
85, 7jca 511 . 2 𝜒 → (𝜑𝜓))
93, 8impbii 209 1 ((𝜑𝜓) ↔ ¬ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  resinsnALT  48746
  Copyright terms: Public domain W3C validator