Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmpod Structured version   Visualization version   GIF version

Theorem fmpod 48705
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fmpodg.1 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
fmpodg.2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
Assertion
Ref Expression
fmpod (𝜑𝐹:(𝐴 × 𝐵)⟶𝑆)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fmpod
StepHypRef Expression
1 fmpodg.1 . 2 (𝜑𝐹 = (𝑥𝐴, 𝑦𝐵𝐶))
2 fmpodg.2 . 2 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶𝑆)
3 eqidd 2735 . 2 (𝜑 → (𝐴 × 𝐵) = (𝐴 × 𝐵))
41, 2, 3fmpodg 48704 1 (𝜑𝐹:(𝐴 × 𝐵)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107   × cxp 5663  wf 6536  cmpo 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator