| Mathbox for Zhi Wang | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmpod | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 30-Sep-2025.) | 
| Ref | Expression | 
|---|---|
| fmpodg.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) | 
| fmpodg.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) | 
| Ref | Expression | 
|---|---|
| fmpod | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)⟶𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fmpodg.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶)) | |
| 2 | fmpodg.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑆) | |
| 3 | eqidd 2735 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) = (𝐴 × 𝐵)) | |
| 4 | 1, 2, 3 | fmpodg 48704 | 1 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)⟶𝑆) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 × cxp 5663 ⟶wf 6536 ∈ cmpo 7414 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |