Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resinsnALT Structured version   Visualization version   GIF version

Theorem resinsnALT 48904
Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resinsnALT ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))

Proof of Theorem resinsnALT
StepHypRef Expression
1 relres 5949 . . 3 Rel (𝐹 ↾ (𝐴 ∩ {𝐵}))
2 reldm0 5863 . . 3 (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅))
31, 2ax-mp 5 . 2 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)
4 dmres 5956 . . . 4 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹)
5 incom 4154 . . . 4 ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
64, 5eqtri 2754 . . 3 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
76eqeq1i 2736 . 2 (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
8 elin 3913 . . . 4 (𝐵 ∈ (dom 𝐹𝐴) ↔ (𝐵 ∈ dom 𝐹𝐵𝐴))
9 ancom 460 . . . 4 ((𝐵 ∈ dom 𝐹𝐵𝐴) ↔ (𝐵𝐴𝐵 ∈ dom 𝐹))
10 snssi 4755 . . . . . . . . 9 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
11 incom 4154 . . . . . . . . . 10 (𝐴 ∩ {𝐵}) = ({𝐵} ∩ 𝐴)
12 dfss2 3915 . . . . . . . . . . 11 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵})
1312biimpi 216 . . . . . . . . . 10 ({𝐵} ⊆ 𝐴 → ({𝐵} ∩ 𝐴) = {𝐵})
1411, 13eqtrid 2778 . . . . . . . . 9 ({𝐵} ⊆ 𝐴 → (𝐴 ∩ {𝐵}) = {𝐵})
1510, 14syl 17 . . . . . . . 8 (𝐵𝐴 → (𝐴 ∩ {𝐵}) = {𝐵})
1615ineq2d 4165 . . . . . . 7 (𝐵𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ {𝐵}))
1716eqeq1d 2733 . . . . . 6 (𝐵𝐴 → ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ (dom 𝐹 ∩ {𝐵}) = ∅))
18 disjsn 4659 . . . . . 6 ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹)
1917, 18bitrdi 287 . . . . 5 (𝐵𝐴 → ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹))
20 disjsn 4659 . . . . . . . 8 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
2120biimpri 228 . . . . . . 7 𝐵𝐴 → (𝐴 ∩ {𝐵}) = ∅)
2221ineq2d 4165 . . . . . 6 𝐵𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ ∅))
23 in0 4340 . . . . . 6 (dom 𝐹 ∩ ∅) = ∅
2422, 23eqtrdi 2782 . . . . 5 𝐵𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
2519, 24resinsnlem 48902 . . . 4 ((𝐵𝐴𝐵 ∈ dom 𝐹) ↔ ¬ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
268, 9, 253bitri 297 . . 3 (𝐵 ∈ (dom 𝐹𝐴) ↔ ¬ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
2726con2bii 357 . 2 ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
283, 7, 273bitri 297 1 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2111  cin 3896  wss 3897  c0 4278  {csn 4571  dom cdm 5611  cres 5613  Rel wrel 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-dm 5621  df-res 5623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator