Proof of Theorem resinsnALT
| Step | Hyp | Ref
| Expression |
| 1 | | relres 6003 |
. . 3
⊢ Rel
(𝐹 ↾ (𝐴 ∩ {𝐵})) |
| 2 | | reldm0 5918 |
. . 3
⊢ (Rel
(𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅) |
| 4 | | dmres 6010 |
. . . 4
⊢ dom
(𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) |
| 5 | | incom 4189 |
. . . 4
⊢ ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) |
| 6 | 4, 5 | eqtri 2757 |
. . 3
⊢ dom
(𝐹 ↾ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) |
| 7 | 6 | eqeq1i 2739 |
. 2
⊢ (dom
(𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅) |
| 8 | | elin 3947 |
. . . 4
⊢ (𝐵 ∈ (dom 𝐹 ∩ 𝐴) ↔ (𝐵 ∈ dom 𝐹 ∧ 𝐵 ∈ 𝐴)) |
| 9 | | ancom 460 |
. . . 4
⊢ ((𝐵 ∈ dom 𝐹 ∧ 𝐵 ∈ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹)) |
| 10 | | snssi 4788 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) |
| 11 | | incom 4189 |
. . . . . . . . . 10
⊢ (𝐴 ∩ {𝐵}) = ({𝐵} ∩ 𝐴) |
| 12 | | dfss2 3949 |
. . . . . . . . . . 11
⊢ ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵}) |
| 13 | 12 | biimpi 216 |
. . . . . . . . . 10
⊢ ({𝐵} ⊆ 𝐴 → ({𝐵} ∩ 𝐴) = {𝐵}) |
| 14 | 11, 13 | eqtrid 2781 |
. . . . . . . . 9
⊢ ({𝐵} ⊆ 𝐴 → (𝐴 ∩ {𝐵}) = {𝐵}) |
| 15 | 10, 14 | syl 17 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐴 → (𝐴 ∩ {𝐵}) = {𝐵}) |
| 16 | 15 | ineq2d 4200 |
. . . . . . 7
⊢ (𝐵 ∈ 𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ {𝐵})) |
| 17 | 16 | eqeq1d 2736 |
. . . . . 6
⊢ (𝐵 ∈ 𝐴 → ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ (dom 𝐹 ∩ {𝐵}) = ∅)) |
| 18 | | disjsn 4691 |
. . . . . 6
⊢ ((dom
𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹) |
| 19 | 17, 18 | bitrdi 287 |
. . . . 5
⊢ (𝐵 ∈ 𝐴 → ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹)) |
| 20 | | disjsn 4691 |
. . . . . . . 8
⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) |
| 21 | 20 | biimpri 228 |
. . . . . . 7
⊢ (¬
𝐵 ∈ 𝐴 → (𝐴 ∩ {𝐵}) = ∅) |
| 22 | 21 | ineq2d 4200 |
. . . . . 6
⊢ (¬
𝐵 ∈ 𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ ∅)) |
| 23 | | in0 4375 |
. . . . . 6
⊢ (dom
𝐹 ∩ ∅) =
∅ |
| 24 | 22, 23 | eqtrdi 2785 |
. . . . 5
⊢ (¬
𝐵 ∈ 𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅) |
| 25 | 19, 24 | resinsnlem 48754 |
. . . 4
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹) ↔ ¬ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅) |
| 26 | 8, 9, 25 | 3bitri 297 |
. . 3
⊢ (𝐵 ∈ (dom 𝐹 ∩ 𝐴) ↔ ¬ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅) |
| 27 | 26 | con2bii 357 |
. 2
⊢ ((dom
𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |
| 28 | 3, 7, 27 | 3bitri 297 |
1
⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |