Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resinsnALT Structured version   Visualization version   GIF version

Theorem resinsnALT 48849
Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resinsnALT ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))

Proof of Theorem resinsnALT
StepHypRef Expression
1 relres 5978 . . 3 Rel (𝐹 ↾ (𝐴 ∩ {𝐵}))
2 reldm0 5893 . . 3 (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅))
31, 2ax-mp 5 . 2 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)
4 dmres 5985 . . . 4 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹)
5 incom 4174 . . . 4 ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
64, 5eqtri 2753 . . 3 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
76eqeq1i 2735 . 2 (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
8 elin 3932 . . . 4 (𝐵 ∈ (dom 𝐹𝐴) ↔ (𝐵 ∈ dom 𝐹𝐵𝐴))
9 ancom 460 . . . 4 ((𝐵 ∈ dom 𝐹𝐵𝐴) ↔ (𝐵𝐴𝐵 ∈ dom 𝐹))
10 snssi 4774 . . . . . . . . 9 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
11 incom 4174 . . . . . . . . . 10 (𝐴 ∩ {𝐵}) = ({𝐵} ∩ 𝐴)
12 dfss2 3934 . . . . . . . . . . 11 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∩ 𝐴) = {𝐵})
1312biimpi 216 . . . . . . . . . 10 ({𝐵} ⊆ 𝐴 → ({𝐵} ∩ 𝐴) = {𝐵})
1411, 13eqtrid 2777 . . . . . . . . 9 ({𝐵} ⊆ 𝐴 → (𝐴 ∩ {𝐵}) = {𝐵})
1510, 14syl 17 . . . . . . . 8 (𝐵𝐴 → (𝐴 ∩ {𝐵}) = {𝐵})
1615ineq2d 4185 . . . . . . 7 (𝐵𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ {𝐵}))
1716eqeq1d 2732 . . . . . 6 (𝐵𝐴 → ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ (dom 𝐹 ∩ {𝐵}) = ∅))
18 disjsn 4677 . . . . . 6 ((dom 𝐹 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹)
1917, 18bitrdi 287 . . . . 5 (𝐵𝐴 → ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ dom 𝐹))
20 disjsn 4677 . . . . . . . 8 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
2120biimpri 228 . . . . . . 7 𝐵𝐴 → (𝐴 ∩ {𝐵}) = ∅)
2221ineq2d 4185 . . . . . 6 𝐵𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = (dom 𝐹 ∩ ∅))
23 in0 4360 . . . . . 6 (dom 𝐹 ∩ ∅) = ∅
2422, 23eqtrdi 2781 . . . . 5 𝐵𝐴 → (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
2519, 24resinsnlem 48847 . . . 4 ((𝐵𝐴𝐵 ∈ dom 𝐹) ↔ ¬ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
268, 9, 253bitri 297 . . 3 (𝐵 ∈ (dom 𝐹𝐴) ↔ ¬ (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅)
2726con2bii 357 . 2 ((dom 𝐹 ∩ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
283, 7, 273bitri 297 1 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3915  wss 3916  c0 4298  {csn 4591  dom cdm 5640  cres 5642  Rel wrel 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rel 5647  df-dm 5650  df-res 5652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator