Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resinsn Structured version   Visualization version   GIF version

Theorem resinsn 48876
Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
resinsn ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))

Proof of Theorem resinsn
StepHypRef Expression
1 relres 5960 . . 3 Rel (𝐹 ↾ (𝐴 ∩ {𝐵}))
2 reldm0 5874 . . 3 (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅))
31, 2ax-mp 5 . 2 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)
4 incom 4162 . . . 4 ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
5 dmres 5967 . . . 4 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹)
6 inass 4181 . . . 4 ((dom 𝐹𝐴) ∩ {𝐵}) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
74, 5, 63eqtr4i 2762 . . 3 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((dom 𝐹𝐴) ∩ {𝐵})
87eqeq1i 2734 . 2 (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ((dom 𝐹𝐴) ∩ {𝐵}) = ∅)
9 disjsn 4665 . 2 (((dom 𝐹𝐴) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
103, 8, 93bitri 297 1 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  cin 3904  c0 4286  {csn 4579  dom cdm 5623  cres 5625  Rel wrel 5628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-dm 5633  df-res 5635
This theorem is referenced by:  tposres2  48884
  Copyright terms: Public domain W3C validator