| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resinsn | Structured version Visualization version GIF version | ||
| Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| resinsn | ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 6021 | . . 3 ⊢ Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) | |
| 2 | reldm0 5936 | . . 3 ⊢ (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅) |
| 4 | incom 4208 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) | |
| 5 | dmres 6028 | . . . 4 ⊢ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) | |
| 6 | inass 4227 | . . . 4 ⊢ ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) | |
| 7 | 4, 5, 6 | 3eqtr4i 2774 | . . 3 ⊢ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) |
| 8 | 7 | eqeq1i 2741 | . 2 ⊢ (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = ∅) |
| 9 | disjsn 4709 | . 2 ⊢ (((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) | |
| 10 | 3, 8, 9 | 3bitri 297 | 1 ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∩ cin 3949 ∅c0 4332 {csn 4624 dom cdm 5683 ↾ cres 5685 Rel wrel 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5142 df-opab 5204 df-xp 5689 df-rel 5690 df-dm 5693 df-res 5695 |
| This theorem is referenced by: tposres2 48753 |
| Copyright terms: Public domain | W3C validator |