Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resinsn Structured version   Visualization version   GIF version

Theorem resinsn 48727
Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
resinsn ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))

Proof of Theorem resinsn
StepHypRef Expression
1 relres 5989 . . 3 Rel (𝐹 ↾ (𝐴 ∩ {𝐵}))
2 reldm0 5904 . . 3 (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅))
31, 2ax-mp 5 . 2 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)
4 incom 4182 . . . 4 ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
5 dmres 5996 . . . 4 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹)
6 inass 4201 . . . 4 ((dom 𝐹𝐴) ∩ {𝐵}) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
74, 5, 63eqtr4i 2767 . . 3 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((dom 𝐹𝐴) ∩ {𝐵})
87eqeq1i 2739 . 2 (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ((dom 𝐹𝐴) ∩ {𝐵}) = ∅)
9 disjsn 4684 . 2 (((dom 𝐹𝐴) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
103, 8, 93bitri 297 1 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  wcel 2107  cin 3923  c0 4306  {csn 4599  dom cdm 5651  cres 5653  Rel wrel 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-xp 5657  df-rel 5658  df-dm 5661  df-res 5663
This theorem is referenced by:  tposres2  48735
  Copyright terms: Public domain W3C validator