| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resinsn | Structured version Visualization version GIF version | ||
| Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| resinsn | ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5989 | . . 3 ⊢ Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) | |
| 2 | reldm0 5904 | . . 3 ⊢ (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅) |
| 4 | incom 4182 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) | |
| 5 | dmres 5996 | . . . 4 ⊢ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) | |
| 6 | inass 4201 | . . . 4 ⊢ ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) | |
| 7 | 4, 5, 6 | 3eqtr4i 2767 | . . 3 ⊢ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) |
| 8 | 7 | eqeq1i 2739 | . 2 ⊢ (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = ∅) |
| 9 | disjsn 4684 | . 2 ⊢ (((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) | |
| 10 | 3, 8, 9 | 3bitri 297 | 1 ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∩ cin 3923 ∅c0 4306 {csn 4599 dom cdm 5651 ↾ cres 5653 Rel wrel 5656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-xp 5657 df-rel 5658 df-dm 5661 df-res 5663 |
| This theorem is referenced by: tposres2 48735 |
| Copyright terms: Public domain | W3C validator |