| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resinsn | Structured version Visualization version GIF version | ||
| Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| resinsn | ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5961 | . . 3 ⊢ Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) | |
| 2 | reldm0 5874 | . . 3 ⊢ (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅) |
| 4 | incom 4158 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) | |
| 5 | dmres 5968 | . . . 4 ⊢ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) | |
| 6 | inass 4177 | . . . 4 ⊢ ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵})) | |
| 7 | 4, 5, 6 | 3eqtr4i 2766 | . . 3 ⊢ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) |
| 8 | 7 | eqeq1i 2738 | . 2 ⊢ (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = ∅) |
| 9 | disjsn 4665 | . 2 ⊢ (((dom 𝐹 ∩ 𝐴) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) | |
| 10 | 3, 8, 9 | 3bitri 297 | 1 ⊢ ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹 ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ∅c0 4282 {csn 4577 dom cdm 5621 ↾ cres 5623 Rel wrel 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-dm 5631 df-res 5633 |
| This theorem is referenced by: tposres2 49041 |
| Copyright terms: Public domain | W3C validator |