Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resinsn Structured version   Visualization version   GIF version

Theorem resinsn 48903
Description: Restriction to the intersection with a singleton. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
resinsn ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))

Proof of Theorem resinsn
StepHypRef Expression
1 relres 5949 . . 3 Rel (𝐹 ↾ (𝐴 ∩ {𝐵}))
2 reldm0 5863 . . 3 (Rel (𝐹 ↾ (𝐴 ∩ {𝐵})) → ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅))
31, 2ax-mp 5 . 2 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅)
4 incom 4154 . . . 4 ((𝐴 ∩ {𝐵}) ∩ dom 𝐹) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
5 dmres 5956 . . . 4 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((𝐴 ∩ {𝐵}) ∩ dom 𝐹)
6 inass 4173 . . . 4 ((dom 𝐹𝐴) ∩ {𝐵}) = (dom 𝐹 ∩ (𝐴 ∩ {𝐵}))
74, 5, 63eqtr4i 2764 . . 3 dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ((dom 𝐹𝐴) ∩ {𝐵})
87eqeq1i 2736 . 2 (dom (𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ((dom 𝐹𝐴) ∩ {𝐵}) = ∅)
9 disjsn 4659 . 2 (((dom 𝐹𝐴) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
103, 8, 93bitri 297 1 ((𝐹 ↾ (𝐴 ∩ {𝐵})) = ∅ ↔ ¬ 𝐵 ∈ (dom 𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  cin 3896  c0 4278  {csn 4571  dom cdm 5611  cres 5613  Rel wrel 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-dm 5621  df-res 5623
This theorem is referenced by:  tposres2  48911
  Copyright terms: Public domain W3C validator