Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbidvALT Structured version   Visualization version   GIF version

Theorem rexbidvALT 3280
 Description: Alternate proof of rexbidv 3256, shorter but requires more axioms. (Contributed by NM, 20-Nov-1994.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
rexbidvALT.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexbidvALT (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rexbidvALT
StepHypRef Expression
1 nfv 1915 . 2 𝑥𝜑
2 rexbidvALT.1 . 2 (𝜑 → (𝜓𝜒))
31, 2rexbid 3279 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∃wrex 3107 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2175 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-nf 1786  df-rex 3112 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator