Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexbidvALT | Structured version Visualization version GIF version |
Description: Alternate proof of rexbidv 3216, shorter but requires more axioms. (Contributed by NM, 20-Nov-1994.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
rexbidvALT.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbidvALT | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1922 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rexbidvALT.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rexbid 3239 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-nf 1792 df-rex 3067 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |