| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv 3156. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| rexbid.1 | ⊢ Ⅎ𝑥𝜑 |
| rexbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexbid | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | rexbida 3244 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-rex 3057 |
| This theorem is referenced by: rexbidvALT 3247 rexeqbid 3325 scott0 9779 infcvgaux1i 15764 bnj1463 35067 fvineqsneq 37456 poimirlem25 37695 poimirlem26 37696 elrnmptf 45288 smfsupmpt 46923 smfinfmpt 46927 |
| Copyright terms: Public domain | W3C validator |