MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbid Structured version   Visualization version   GIF version

Theorem rexbid 3260
Description: Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv 3165. (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
rexbid.1 𝑥𝜑
rexbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexbid (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Proof of Theorem rexbid
StepHypRef Expression
1 rexbid.1 . 2 𝑥𝜑
2 rexbid.2 . . 3 (𝜑 → (𝜓𝜒))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3rexbida 3258 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  wcel 2109  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-rex 3062
This theorem is referenced by:  rexbidvALT  3261  rexeqbid  3343  scott0  9905  infcvgaux1i  15878  bnj1463  35091  fvineqsneq  37435  poimirlem25  37674  poimirlem26  37675  elrnmptf  45172  smfsupmpt  46811  smfinfmpt  46815
  Copyright terms: Public domain W3C validator