![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv 3177. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
rexbid.1 | ⊢ Ⅎ𝑥𝜑 |
rexbid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexbid | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbid.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rexbid.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
4 | 1, 3 | rexbida 3270 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1780 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-rex 3069 |
This theorem is referenced by: rexbidvALT 3273 rexeqbid 3355 scott0 9924 infcvgaux1i 15890 bnj1463 35048 fvineqsneq 37395 poimirlem25 37632 poimirlem26 37633 elrnmptf 45124 smfsupmpt 46771 smfinfmpt 46775 |
Copyright terms: Public domain | W3C validator |