MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbid Structured version   Visualization version   GIF version

Theorem rexbid 3253
Description: Formula-building rule for restricted existential quantifier (deduction form). For a version based on fewer axioms see rexbidv 3171. (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
rexbid.1 𝑥𝜑
rexbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexbid (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Proof of Theorem rexbid
StepHypRef Expression
1 rexbid.1 . 2 𝑥𝜑
2 rexbid.2 . . 3 (𝜑 → (𝜓𝜒))
32adantr 481 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3rexbida 3251 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1784  wcel 2105  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-nf 1785  df-rex 3071
This theorem is referenced by:  rexbidvALT  3254  rexeqbid  3327  scott0  9743  infcvgaux1i  15668  bnj1463  33334  fvineqsneq  35688  poimirlem25  35907  poimirlem26  35908  elrnmptf  43045  smfsupmpt  44690  smfinfmpt  44694
  Copyright terms: Public domain W3C validator