MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimivaOLD Structured version   Visualization version   GIF version

Theorem rexlimivaOLD 3179
Description: Obsolete version of rexlimiva 3141 as of 23-Dec-2024. (Contributed by NM, 18-Dec-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rexlimivaOLD.1 ((𝑥𝐴𝜑) → 𝜓)
Assertion
Ref Expression
rexlimivaOLD (∃𝑥𝐴 𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimivaOLD
StepHypRef Expression
1 rexlimivaOLD.1 . . 3 ((𝑥𝐴𝜑) → 𝜓)
21ex 414 . 2 (𝑥𝐴 → (𝜑𝜓))
32rexlimiv 3142 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  wrex 3071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-rex 3072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator