MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimivOLD Structured version   Visualization version   GIF version

Theorem rexlimivOLD 3191
Description: Obsolete version of rexlimiv 3154 as of 19-Dec-2024.) (Contributed by NM, 20-Nov-1994.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rexlimivOLD.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexlimivOLD (∃𝑥𝐴 𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimivOLD
StepHypRef Expression
1 rexlimivOLD.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21rgen 3069 . 2 𝑥𝐴 (𝜑𝜓)
3 r19.23v 3189 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
42, 3mpbi 230 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator