MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimivwOLD Structured version   Visualization version   GIF version

Theorem rexlimivwOLD 3186
Description: Obsolete version of rexlimivw 3151 as of 23-Dec-2024. (Contributed by FL, 19-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rexlimivwOLD.1 (𝜑𝜓)
Assertion
Ref Expression
rexlimivwOLD (∃𝑥𝐴 𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimivwOLD
StepHypRef Expression
1 rexlimivwOLD.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32rexlimiv 3148 1 (∃𝑥𝐴 𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-rex 3071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator