Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4aALT Structured version   Visualization version   GIF version

Theorem sb4aALT 2598
 Description: Alternate version of sb4a 2510. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfsb1.p2 (𝜃 ↔ ((𝑥 = 𝑦 → ∀𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)))
Assertion
Ref Expression
sb4aALT (𝜃 → ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sb4aALT
StepHypRef Expression
1 dfsb1.p2 . . 3 (𝜃 ↔ ((𝑥 = 𝑦 → ∀𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)))
21sb1ALT 2582 . 2 (𝜃 → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑))
3 equs5a 2481 . 2 (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜑))
42, 3syl 17 1 (𝜃 → ∀𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2178  ax-13 2391 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786 This theorem is referenced by:  sb6fALT  2602
 Copyright terms: Public domain W3C validator