MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4a Structured version   Visualization version   GIF version

Theorem sb4a 2484
Description: A version of one implication of sb4b 2475 that does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker sb4av 2236 when possible. (Contributed by NM, 2-Feb-2007.) Revise df-sb 2068. (Revised by Wolf Lammen, 28-Jul-2023.) (New usage is discouraged.)
Assertion
Ref Expression
sb4a ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))

Proof of Theorem sb4a
StepHypRef Expression
1 sbequ2 2241 . . . 4 (𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑡𝜑))
21sps 2178 . . 3 (∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑡𝜑))
3 axc11r 2366 . . . 4 (∀𝑥 𝑥 = 𝑡 → (∀𝑡𝜑 → ∀𝑥𝜑))
4 ala1 1816 . . . 4 (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))
53, 4syl6 35 . . 3 (∀𝑥 𝑥 = 𝑡 → (∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
62, 5syld 47 . 2 (∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
7 sb4b 2475 . . 3 (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → ∀𝑡𝜑)))
8 sp 2176 . . . . 5 (∀𝑡𝜑𝜑)
98imim2i 16 . . . 4 ((𝑥 = 𝑡 → ∀𝑡𝜑) → (𝑥 = 𝑡𝜑))
109alimi 1814 . . 3 (∀𝑥(𝑥 = 𝑡 → ∀𝑡𝜑) → ∀𝑥(𝑥 = 𝑡𝜑))
117, 10syl6bi 252 . 2 (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
126, 11pm2.61i 182 1 ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  hbsb2a  2488  sb6f  2501
  Copyright terms: Public domain W3C validator