Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb4a | Structured version Visualization version GIF version |
Description: A version of one implication of sb4b 2475 that does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker sb4av 2239 when possible. (Contributed by NM, 2-Feb-2007.) Revise df-sb 2069. (Revised by Wolf Lammen, 28-Jul-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb4a | ⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ2 2244 | . . . 4 ⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑡𝜑)) | |
2 | 1 | sps 2180 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑡𝜑)) |
3 | axc11r 2366 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑡 → (∀𝑡𝜑 → ∀𝑥𝜑)) | |
4 | ala1 1817 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | |
5 | 3, 4 | syl6 35 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑡 → (∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
6 | 2, 5 | syld 47 | . 2 ⊢ (∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
7 | sb4b 2475 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → ∀𝑡𝜑))) | |
8 | sp 2178 | . . . . 5 ⊢ (∀𝑡𝜑 → 𝜑) | |
9 | 8 | imim2i 16 | . . . 4 ⊢ ((𝑥 = 𝑡 → ∀𝑡𝜑) → (𝑥 = 𝑡 → 𝜑)) |
10 | 9 | alimi 1815 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑡 → ∀𝑡𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
11 | 7, 10 | syl6bi 252 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
12 | 6, 11 | pm2.61i 182 | 1 ⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: hbsb2a 2488 sb6f 2501 |
Copyright terms: Public domain | W3C validator |