| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb4a | Structured version Visualization version GIF version | ||
| Description: A version of one implication of sb4b 2480 that does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker sb4av 2244 when possible. (Contributed by NM, 2-Feb-2007.) Revise df-sb 2065. (Revised by Wolf Lammen, 28-Jul-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sb4a | ⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ2 2249 | . . . 4 ⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑡𝜑)) | |
| 2 | 1 | sps 2185 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑡𝜑)) |
| 3 | axc11r 2371 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑡 → (∀𝑡𝜑 → ∀𝑥𝜑)) | |
| 4 | ala1 1813 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | |
| 5 | 3, 4 | syl6 35 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑡 → (∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 6 | 2, 5 | syld 47 | . 2 ⊢ (∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 7 | sb4b 2480 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → ∀𝑡𝜑))) | |
| 8 | sp 2183 | . . . . 5 ⊢ (∀𝑡𝜑 → 𝜑) | |
| 9 | 8 | imim2i 16 | . . . 4 ⊢ ((𝑥 = 𝑡 → ∀𝑡𝜑) → (𝑥 = 𝑡 → 𝜑)) |
| 10 | 9 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑡 → ∀𝑡𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 11 | 7, 10 | biimtrdi 253 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑡 → ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 12 | 6, 11 | pm2.61i 182 | 1 ⊢ ([𝑡 / 𝑥]∀𝑡𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: hbsb2a 2489 sb6f 2502 |
| Copyright terms: Public domain | W3C validator |