Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb4vOLDALT Structured version   Visualization version   GIF version

Theorem sb4vOLDALT 2584
 Description: Alternate version of sb4vOLD 2096. (Contributed by BJ, 23-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
dfsb1.ph (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
Assertion
Ref Expression
sb4vOLDALT (𝜃 → ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜃(𝑥,𝑦)

Proof of Theorem sb4vOLDALT
StepHypRef Expression
1 dfsb1.ph . . 3 (𝜃 ↔ ((𝑥 = 𝑦𝜑) ∧ ∃𝑥(𝑥 = 𝑦𝜑)))
21sb1ALT 2582 . 2 (𝜃 → ∃𝑥(𝑥 = 𝑦𝜑))
3 sb56 2278 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
42, 3sylib 221 1 (𝜃 → ∀𝑥(𝑥 = 𝑦𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2178 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by:  sb6ALT  2585
 Copyright terms: Public domain W3C validator