MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb56 Structured version   Visualization version   GIF version

Theorem sb56 2305
Description: Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 2068. The implication "to the left" is equs4 2436 and does not require any disjoint variable condition (but the version with a disjoint variable condition, equs4v 2107, requires fewer axioms). Theorem equs45f 2480 replaces the disjoint variable condition with a non-freeness hypothesis and equs5 2481 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2299 in place of equsex 2438 in order to remove dependency on ax-13 2389. (Revised by BJ, 20-Dec-2020.)
Assertion
Ref Expression
sb56 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb56
StepHypRef Expression
1 nfa1 2202 . 2 𝑥𝑥(𝑥 = 𝑦𝜑)
2 ax12v2 2222 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
3 sp 2224 . . . 4 (∀𝑥(𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜑))
43com12 32 . . 3 (𝑥 = 𝑦 → (∀𝑥(𝑥 = 𝑦𝜑) → 𝜑))
52, 4impbid 204 . 2 (𝑥 = 𝑦 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
61, 5equsexv 2299 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1654  wex 1878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-10 2192  ax-12 2220
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-ex 1879  df-nf 1883
This theorem is referenced by:  sb4v  2306  sb5  2308  sb6OLD  2561  mopick  2715  alexeqg  3550  dfdif3  3949  bj-sb3v  33286  pm13.196a  39453
  Copyright terms: Public domain W3C validator