![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbf2 | Structured version Visualization version GIF version |
Description: Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.) |
Ref | Expression |
---|---|
sbf2 | ⊢ ([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2121 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | 1 | sbf 2234 | 1 ⊢ ([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∀wal 1520 [wsb 2042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-or 843 df-ex 1762 df-nf 1766 df-sb 2043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |