![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2088. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbft 2271 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: sbf2 2273 sbh 2274 nfs1f 2276 sbrimOLD 2309 sblim 2310 sbrbif 2315 sbiev 2318 sb8f 2359 sb6x 2472 sbequ5 2473 sbequ6 2474 sb2ae 2504 sbie 2510 sbid2 2516 sbabel 2944 sbabelOLD 2945 sbhypf 3556 nfcdeq 3799 mo5f 32517 suppss2f 32657 fmptdF 32674 disjdsct 32714 esumpfinvalf 34040 bj-sbf3 36805 bj-sbf4 36806 ellimcabssub0 45538 2reu8i 47028 ichf 47324 |
Copyright terms: Public domain | W3C validator |