MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2263
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2092. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2262 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1786  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-sb 2069
This theorem is referenced by:  sbf2  2264  sbh  2265  nfs1f  2267  sbrimOLD  2302  sblim  2303  sbrbif  2308  sb8f  2350  sb6x  2464  sbequ5  2465  sbequ6  2466  sb2ae  2496  sbie  2502  sbid2  2508  sbabel  2939  sbabelOLD  2940  sbhypf  3539  nfcdeq  3774  mo5f  31729  suppss2f  31863  fmptdF  31881  disjdsct  31924  esumpfinvalf  33074  bj-sbf3  35717  bj-sbf4  35718  ellimcabssub0  44333  2reu8i  45821  ichf  46118
  Copyright terms: Public domain W3C validator