![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2085. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbft 2267 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 Ⅎwnf 1779 [wsb 2061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-nf 1780 df-sb 2062 |
This theorem is referenced by: sbf2 2269 sbh 2270 nfs1f 2272 sbrimOLD 2303 sblim 2304 sbrbif 2309 sbiev 2312 sb8f 2353 sb6x 2466 sbequ5 2467 sbequ6 2468 sb2ae 2498 sbie 2504 sbid2 2510 sbabel 2935 sbabelOLD 2936 sbhypf 3543 nfcdeq 3785 mo5f 32516 suppss2f 32654 fmptdF 32672 disjdsct 32717 esumpfinvalf 34056 bj-sbf3 36821 bj-sbf4 36822 ellimcabssub0 45572 2reu8i 47062 ichf 47374 |
Copyright terms: Public domain | W3C validator |