MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2263
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2091. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2262 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  sbf2  2264  sbh  2265  nfs1f  2267  sbrimOLD  2302  sblim  2303  sbrbif  2308  sb8f  2351  sb6x  2464  sbequ5  2465  sbequ6  2466  sb2ae  2500  sbie  2506  sbid2  2512  sbabel  2941  sbabelOLD  2942  nfcdeq  3712  mo5f  30837  suppss2f  30974  fmptdF  30993  disjdsct  31035  esumpfinvalf  32044  bj-sbf3  35022  bj-sbf4  35023  ellimcabssub0  43158  2reu8i  44605  ichf  44902
  Copyright terms: Public domain W3C validator