MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2271
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2088. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2270 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wnf 1783  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by:  sbf2  2272  sbh  2273  nfs1f  2275  sbrimOLD  2305  sblim  2306  sbrbif  2311  sbiev  2314  sb8f  2356  sb6x  2469  sbequ5  2470  sbequ6  2471  sb2ae  2501  sbie  2507  sbid2  2513  sbabel  2938  sbabelOLD  2939  sbhypf  3544  nfcdeq  3783  mo5f  32508  suppss2f  32648  fmptdF  32666  disjdsct  32712  esumpfinvalf  34077  bj-sbf3  36840  bj-sbf4  36841  ellimcabssub0  45632  2reu8i  47125  ichf  47437
  Copyright terms: Public domain W3C validator