| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2088. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbft 2270 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbf2 2272 sbh 2273 nfs1f 2275 sbrimOLD 2305 sblim 2306 sbrbif 2311 sbiev 2314 sb8f 2356 sb6x 2469 sbequ5 2470 sbequ6 2471 sb2ae 2501 sbie 2507 sbid2 2513 sbabel 2938 sbabelOLD 2939 sbhypf 3544 nfcdeq 3783 mo5f 32508 suppss2f 32648 fmptdF 32666 disjdsct 32712 esumpfinvalf 34077 bj-sbf3 36840 bj-sbf4 36841 ellimcabssub0 45632 2reu8i 47125 ichf 47437 |
| Copyright terms: Public domain | W3C validator |