Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2091. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbft 2262 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: sbf2 2264 sbh 2265 nfs1f 2267 sbrimOLD 2302 sblim 2303 sbrbif 2308 sb8f 2351 sb6x 2464 sbequ5 2465 sbequ6 2466 sb2ae 2500 sbie 2506 sbid2 2512 sbabel 2941 sbabelOLD 2942 nfcdeq 3712 mo5f 30837 suppss2f 30974 fmptdF 30993 disjdsct 31035 esumpfinvalf 32044 bj-sbf3 35022 bj-sbf4 35023 ellimcabssub0 43158 2reu8i 44605 ichf 44902 |
Copyright terms: Public domain | W3C validator |