MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2273
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2091. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2272 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wnf 1784  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  sbf2  2274  sbh  2275  nfs1f  2277  sblim  2307  sbrbif  2312  sbiev  2315  sb8f  2354  sb6x  2464  sbequ5  2465  sbequ6  2466  sb2ae  2496  sbie  2502  sbid2  2508  sbabel  2927  sbhypf  3499  nfcdeq  3736  mo5f  32466  suppss2f  32618  fmptdF  32636  disjdsct  32682  esumpfinvalf  34087  bj-sbf3  36879  bj-sbf4  36880  ellimcabssub0  45663  2reu8i  47150  ichf  47487
  Copyright terms: Public domain W3C validator