| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2089. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbft 2270 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: sbf2 2272 sbh 2273 nfs1f 2275 sblim 2305 sbrbif 2310 sbiev 2313 sb8f 2352 sb6x 2463 sbequ5 2464 sbequ6 2465 sb2ae 2495 sbie 2501 sbid2 2507 sbabel 2925 sbhypf 3513 nfcdeq 3751 mo5f 32425 suppss2f 32569 fmptdF 32587 disjdsct 32633 esumpfinvalf 34073 bj-sbf3 36834 bj-sbf4 36835 ellimcabssub0 45622 2reu8i 47118 ichf 47455 |
| Copyright terms: Public domain | W3C validator |