Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2091. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbft 2262 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1785 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 df-sb 2068 |
This theorem is referenced by: sbf2 2264 sbh 2265 nfs1f 2267 sbrimOLD 2302 sblim 2303 sbrbif 2308 sb8f 2350 sb6x 2463 sbequ5 2464 sbequ6 2465 sb2ae 2499 sbie 2505 sbid2 2511 sbabel 2939 sbabelOLD 2940 nfcdeq 3727 mo5f 31124 suppss2f 31259 fmptdF 31278 disjdsct 31320 esumpfinvalf 32340 bj-sbf3 35158 bj-sbf4 35159 ellimcabssub0 43544 2reu8i 45021 ichf 45318 |
Copyright terms: Public domain | W3C validator |