MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2272
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2088. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2271 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wnf 1781  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  sbf2  2273  sbh  2274  nfs1f  2276  sbrimOLD  2309  sblim  2310  sbrbif  2315  sbiev  2318  sb8f  2359  sb6x  2472  sbequ5  2473  sbequ6  2474  sb2ae  2504  sbie  2510  sbid2  2516  sbabel  2944  sbabelOLD  2945  sbhypf  3556  nfcdeq  3799  mo5f  32517  suppss2f  32657  fmptdF  32674  disjdsct  32714  esumpfinvalf  34040  bj-sbf3  36805  bj-sbf4  36806  ellimcabssub0  45538  2reu8i  47028  ichf  47324
  Copyright terms: Public domain W3C validator