| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2093. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbft 2274 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: sbf2 2276 sbh 2277 nfs1f 2279 sblim 2309 sbrbif 2314 sbiev 2317 sb8f 2356 sb6x 2466 sbequ5 2467 sbequ6 2468 sb2ae 2498 sbie 2504 sbid2 2510 sbabel 2928 sbhypf 3499 nfcdeq 3732 mo5f 32470 suppss2f 32622 fmptdF 32640 disjdsct 32688 esumpfinvalf 34110 bj-sbf3 36904 bj-sbf4 36905 ellimcabssub0 45742 2reu8i 47238 ichf 47575 |
| Copyright terms: Public domain | W3C validator |