Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2092. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbft 2265 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sbf2 2267 sbh 2268 nfs1f 2270 sbrim 2304 sblim 2306 sbrbif 2311 sb6x 2464 sbequ5 2465 sbequ6 2466 sb2ae 2500 sbie 2506 sbid2 2512 sbabel 2940 sbabelOLD 2941 nfcdeq 3707 mo5f 30738 suppss2f 30875 fmptdF 30895 disjdsct 30937 esumpfinvalf 31944 bj-sbf3 34949 bj-sbf4 34950 ellimcabssub0 43048 2reu8i 44492 ichf 44790 |
Copyright terms: Public domain | W3C validator |