MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2263
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2091. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2262 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1785  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1782  df-nf 1786  df-sb 2068
This theorem is referenced by:  sbf2  2264  sbh  2265  nfs1f  2267  sbrimOLD  2302  sblim  2303  sbrbif  2308  sb8f  2350  sb6x  2463  sbequ5  2464  sbequ6  2465  sb2ae  2499  sbie  2505  sbid2  2511  sbabel  2939  sbabelOLD  2940  nfcdeq  3727  mo5f  31124  suppss2f  31259  fmptdF  31278  disjdsct  31320  esumpfinvalf  32340  bj-sbf3  35158  bj-sbf4  35159  ellimcabssub0  43544  2reu8i  45021  ichf  45318
  Copyright terms: Public domain W3C validator