MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2271
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2088. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2270 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wnf 1783  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by:  sbf2  2272  sbh  2273  nfs1f  2275  sbrimOLD  2305  sblim  2306  sbrbif  2311  sbiev  2314  sb8f  2355  sb6x  2468  sbequ5  2469  sbequ6  2470  sb2ae  2500  sbie  2506  sbid2  2512  sbabel  2931  sbhypf  3523  nfcdeq  3760  mo5f  32470  suppss2f  32616  fmptdF  32634  disjdsct  32680  esumpfinvalf  34107  bj-sbf3  36857  bj-sbf4  36858  ellimcabssub0  45646  2reu8i  47142  ichf  47464
  Copyright terms: Public domain W3C validator