| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2088. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbft 2270 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbf2 2272 sbh 2273 nfs1f 2275 sbrimOLD 2305 sblim 2306 sbrbif 2311 sbiev 2314 sb8f 2355 sb6x 2468 sbequ5 2469 sbequ6 2470 sb2ae 2500 sbie 2506 sbid2 2512 sbabel 2931 sbhypf 3523 nfcdeq 3760 mo5f 32470 suppss2f 32616 fmptdF 32634 disjdsct 32680 esumpfinvalf 34107 bj-sbf3 36857 bj-sbf4 36858 ellimcabssub0 45646 2reu8i 47142 ichf 47464 |
| Copyright terms: Public domain | W3C validator |