![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2092. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
Ref | Expression |
---|---|
sbf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbft 2262 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1786 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-sb 2069 |
This theorem is referenced by: sbf2 2264 sbh 2265 nfs1f 2267 sbrimOLD 2302 sblim 2303 sbrbif 2308 sb8f 2350 sb6x 2464 sbequ5 2465 sbequ6 2466 sb2ae 2496 sbie 2502 sbid2 2508 sbabel 2939 sbabelOLD 2940 sbhypf 3539 nfcdeq 3774 mo5f 31729 suppss2f 31863 fmptdF 31881 disjdsct 31924 esumpfinvalf 33074 bj-sbf3 35717 bj-sbf4 35718 ellimcabssub0 44333 2reu8i 45821 ichf 46118 |
Copyright terms: Public domain | W3C validator |