| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbf | Structured version Visualization version GIF version | ||
| Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2091. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbf.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| sbf | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | sbft 2272 | . 2 ⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: sbf2 2274 sbh 2275 nfs1f 2277 sblim 2307 sbrbif 2312 sbiev 2315 sb8f 2354 sb6x 2464 sbequ5 2465 sbequ6 2466 sb2ae 2496 sbie 2502 sbid2 2508 sbabel 2927 sbhypf 3499 nfcdeq 3736 mo5f 32466 suppss2f 32618 fmptdF 32636 disjdsct 32682 esumpfinvalf 34087 bj-sbf3 36879 bj-sbf4 36880 ellimcabssub0 45663 2reu8i 47150 ichf 47487 |
| Copyright terms: Public domain | W3C validator |