MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbf Structured version   Visualization version   GIF version

Theorem sbf 2266
Description: Substitution for a variable not free in a wff does not affect it. For a version requiring disjoint variables but fewer axioms, see sbv 2092. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
sbf.1 𝑥𝜑
Assertion
Ref Expression
sbf ([𝑦 / 𝑥]𝜑𝜑)

Proof of Theorem sbf
StepHypRef Expression
1 sbf.1 . 2 𝑥𝜑
2 sbft 2265 . 2 (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑𝜑))
31, 2ax-mp 5 1 ([𝑦 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  sbf2  2267  sbh  2268  nfs1f  2270  sbrim  2304  sblim  2306  sbrbif  2311  sb6x  2464  sbequ5  2465  sbequ6  2466  sb2ae  2500  sbie  2506  sbid2  2512  sbabel  2940  sbabelOLD  2941  nfcdeq  3707  mo5f  30738  suppss2f  30875  fmptdF  30895  disjdsct  30937  esumpfinvalf  31944  bj-sbf3  34949  bj-sbf4  34950  ellimcabssub0  43048  2reu8i  44492  ichf  44790
  Copyright terms: Public domain W3C validator