HomeHome Metamath Proof Explorer
Theorem List (p. 482 of 485)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30800)
  Hilbert Space Explorer  Hilbert Space Explorer
(30801-32323)
  Users' Mathboxes  Users' Mathboxes
(32324-48424)
 

Theorem List for Metamath Proof Explorer - 48101-48200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
21.46.7  Order sets
 
21.46.7.1  Real number intervals
 
Theoremiccin 48101 Intersection of two closed intervals of extended reals. (Contributed by Zhi Wang, 9-Sep-2024.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)[,]if(𝐵𝐷, 𝐵, 𝐷)))
 
Theoremiccdisj2 48102 If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
((𝐴 ∈ ℝ*𝐷 ∈ ℝ*𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)
 
Theoremiccdisj 48103 If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024.)
((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝐵 < 𝐶) → ((𝐴[,]𝐵) ∩ (𝐶[,]𝐷)) = ∅)
 
21.46.8  Moore spaces
 
Theoremmreuniss 48104 The union of a collection of closed sets is a subset. (Contributed by Zhi Wang, 29-Sep-2024.)
((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
 
21.46.9  Topology

Additional contents for topology.

 
21.46.9.1  Closure and interior
 
Theoremclduni 48105 The union of closed sets is the underlying set of the topology (the union of open sets). (Contributed by Zhi Wang, 6-Sep-2024.)
(𝐽 ∈ Top → (Clsd‘𝐽) = 𝐽)
 
Theoremopncldeqv 48106* Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.)
(𝜑𝐽 ∈ Top)    &   ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
 
Theoremopndisj 48107 Two ways of saying that two open sets are disjoint, if 𝐽 is a topology and 𝑋 is an open set. (Contributed by Zhi Wang, 6-Sep-2024.)
(𝑍 = ( 𝐽𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌𝐽 ∧ (𝑋𝑌) = ∅)))
 
Theoremclddisj 48108 Two ways of saying that two closed sets are disjoint, if 𝐽 is a topology and 𝑋 is a closed set. An alternative proof is similar to that of opndisj 48107 with elssuni 4941 replaced by the combination of cldss 22977 and eqid 2725. (Contributed by Zhi Wang, 6-Sep-2024.)
(𝑍 = ( 𝐽𝑋) → (𝑌 ∈ ((Clsd‘𝐽) ∩ 𝒫 𝑍) ↔ (𝑌 ∈ (Clsd‘𝐽) ∧ (𝑋𝑌) = ∅)))
 
21.46.9.2  Neighborhoods
 
Theoremneircl 48109 Reverse closure of the neighborhood operation. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by Zhi Wang, 16-Sep-2024.)
(𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝐽 ∈ Top)
 
Theoremopnneilem 48110* Lemma factoring out common proof steps of opnneil 48114 and opnneirv 48112. (Contributed by Zhi Wang, 31-Aug-2024.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
 
Theoremopnneir 48111* If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024.)
(𝜑𝐽 ∈ Top)       (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
 
Theoremopnneirv 48112* A variant of opnneir 48111 with different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.)
(𝜑𝐽 ∈ Top)    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑦 ∈ ((nei‘𝐽)‘𝑆)𝜒))
 
Theoremopnneilv 48113* The converse of opnneir 48111 with different dummy variables. Note that the second hypothesis could be generalized by adding 𝑦𝐽 to the antecedent. See the proof for details. Although 𝐽 ∈ Top might be redundant here (see neircl 48109), it is listed for explicitness. (Contributed by Zhi Wang, 31-Aug-2024.)
(𝜑𝐽 ∈ Top)    &   ((𝜑𝑦𝑥) → (𝜓𝜒))       (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑦𝐽 (𝑆𝑦𝜒)))
 
Theoremopnneil 48114* A variant of opnneilv 48113. (Contributed by Zhi Wang, 31-Aug-2024.)
(𝜑𝐽 ∈ Top)    &   ((𝜑𝑦𝑥) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑥𝐽 (𝑆𝑥𝜓)))
 
Theoremopnneieqv 48115* The equivalence between neighborhood and open neighborhood. See opnneieqvv 48116 for different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.)
(𝜑𝐽 ∈ Top)    &   ((𝜑𝑦𝑥) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥𝐽 (𝑆𝑥𝜓)))
 
Theoremopnneieqvv 48116* The equivalence between neighborhood and open neighborhood. A variant of opnneieqv 48115 with two dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.)
(𝜑𝐽 ∈ Top)    &   ((𝜑𝑦𝑥) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑦𝐽 (𝑆𝑦𝜒)))
 
21.46.9.3  Subspace topologies
 
Theoremrestcls2lem 48117 A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑋 = 𝐽)    &   (𝜑𝑌𝑋)    &   (𝜑𝐾 = (𝐽t 𝑌))    &   (𝜑𝑆 ∈ (Clsd‘𝐾))       (𝜑𝑆𝑌)
 
Theoremrestcls2 48118 A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑋 = 𝐽)    &   (𝜑𝑌𝑋)    &   (𝜑𝐾 = (𝐽t 𝑌))    &   (𝜑𝑆 ∈ (Clsd‘𝐾))       (𝜑𝑆 = (((cls‘𝐽)‘𝑆) ∩ 𝑌))
 
Theoremrestclsseplem 48119 Lemma for restclssep 48120. (Contributed by Zhi Wang, 2-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑋 = 𝐽)    &   (𝜑𝑌𝑋)    &   (𝜑𝐾 = (𝐽t 𝑌))    &   (𝜑𝑆 ∈ (Clsd‘𝐾))    &   (𝜑 → (𝑆𝑇) = ∅)    &   (𝜑𝑇𝑌)       (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)
 
Theoremrestclssep 48120 Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑋 = 𝐽)    &   (𝜑𝑌𝑋)    &   (𝜑𝐾 = (𝐽t 𝑌))    &   (𝜑𝑆 ∈ (Clsd‘𝐾))    &   (𝜑 → (𝑆𝑇) = ∅)    &   (𝜑𝑇 ∈ (Clsd‘𝐾))       (𝜑 → ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅))
 
21.46.9.4  Limits and continuity in topological spaces
 
Theoremcnneiima 48121 Given a continuous function, the preimage of a neighborhood is a neighborhood. To be precise, the preimage of a neighborhood of a subset 𝑇 of the codomain of a continuous function is a neighborhood of any subset of the preimage of 𝑇. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑁 ∈ ((nei‘𝐾)‘𝑇))    &   (𝜑𝑆 ⊆ (𝐹𝑇))       (𝜑 → (𝐹𝑁) ∈ ((nei‘𝐽)‘𝑆))
 
21.46.9.5  Topological definitions using the reals
 
Theoremiooii 48122 Open intervals are open sets of II. (Contributed by Zhi Wang, 9-Sep-2024.)
((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴(,)𝐵) ∈ II)
 
Theoremicccldii 48123 Closed intervals are closed sets of II. Note that iccss 13427, iccordt 23162, and ordtresticc 23171 are proved from ixxss12 13379, ordtcld3 23147, and ordtrest2 23152, respectively. An alternate proof uses restcldi 23121, dfii2 24846, and icccld 24727. (Contributed by Zhi Wang, 8-Sep-2024.)
((0 ≤ 𝐴𝐵 ≤ 1) → (𝐴[,]𝐵) ∈ (Clsd‘II))
 
Theoremi0oii 48124 (0[,)𝐴) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝐴 ≤ 1 → (0[,)𝐴) ∈ II)
 
Theoremio1ii 48125 (𝐴(,]1) is open in II. (Contributed by Zhi Wang, 9-Sep-2024.)
(0 ≤ 𝐴 → (𝐴(,]1) ∈ II)
 
21.46.9.6  Separated sets
 
Theoremsepnsepolem1 48126* Lemma for sepnsepo 48128. (Contributed by Zhi Wang, 1-Sep-2024.)
(∃𝑥𝐽𝑦𝐽 (𝜑𝜓𝜒) ↔ ∃𝑥𝐽 (𝜑 ∧ ∃𝑦𝐽 (𝜓𝜒)))
 
Theoremsepnsepolem2 48127* Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo 48128. Proof could be shortened by 1 step using ssdisjdr 48065. (Contributed by Zhi Wang, 1-Sep-2024.)
(𝜑𝐽 ∈ Top)       (𝜑 → (∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑦𝐽 (𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
 
Theoremsepnsepo 48128* Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
(𝜑𝐽 ∈ Top)       (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝐶)∃𝑦 ∈ ((nei‘𝐽)‘𝐷)(𝑥𝑦) = ∅ ↔ ∃𝑥𝐽𝑦𝐽 (𝐶𝑥𝐷𝑦 ∧ (𝑥𝑦) = ∅)))
 
Theoremsepdisj 48129 Separated sets are disjoint. Note that in general separatedness also requires 𝑇 𝐽 and (𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ as well but they are unnecessary here. (Contributed by Zhi Wang, 7-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑 → (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)       (𝜑 → (𝑆𝑇) = ∅)
 
Theoremseposep 48130* If two sets are separated by (open) neighborhoods, then they are separated subsets of the underlying set. Note that separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. See sepnsepo 48128. The relationship between separatedness and closure is also seen in isnrm 23283, isnrm2 23306, isnrm3 23307. (Contributed by Zhi Wang, 7-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))       (𝜑 → ((𝑆 𝐽𝑇 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)))
 
Theoremsepcsepo 48131* If two sets are separated by closed neighborhoods, then they are separated by (open) neighborhoods. See sepnsepo 48128 for the equivalence between separatedness by open neighborhoods and separatedness by neighborhoods. Although 𝐽 ∈ Top might be redundant here, it is listed for explicitness. 𝐽 ∈ Top can be obtained from neircl 48109, adantr 479, and rexlimiva 3136. (Contributed by Zhi Wang, 8-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))       (𝜑 → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅))
 
Theoremsepfsepc 48132* If two sets are separated by a continuous function, then they are separated by closed neighborhoods. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))       (𝜑 → ∃𝑛 ∈ ((nei‘𝐽)‘𝑆)∃𝑚 ∈ ((nei‘𝐽)‘𝑇)(𝑛 ∈ (Clsd‘𝐽) ∧ 𝑚 ∈ (Clsd‘𝐽) ∧ (𝑛𝑚) = ∅))
 
Theoremseppsepf 48133 If two sets are precisely separated by a continuous function, then they are separated by the continuous function. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))       (𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 ⊆ (𝑓 “ {0}) ∧ 𝑇 ⊆ (𝑓 “ {1})))
 
Theoremseppcld 48134* If two sets are precisely separated by a continuous function, then they are closed. An alternate proof involves II ∈ Fre. (Contributed by Zhi Wang, 9-Sep-2024.)
(𝜑 → ∃𝑓 ∈ (𝐽 Cn II)(𝑆 = (𝑓 “ {0}) ∧ 𝑇 = (𝑓 “ {1})))       (𝜑 → (𝑆 ∈ (Clsd‘𝐽) ∧ 𝑇 ∈ (Clsd‘𝐽)))
 
21.46.9.7  Separated spaces: T0, T1, T2 (Hausdorff) ...
 
Theoremisnrm4 48135* A topological space is normal iff any two disjoint closed sets are separated by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024.)
(𝐽 ∈ Nrm ↔ (𝐽 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝐽)∀𝑑 ∈ (Clsd‘𝐽)((𝑐𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝐽)‘𝑐)∃𝑦 ∈ ((nei‘𝐽)‘𝑑)(𝑥𝑦) = ∅)))
 
Theoremdfnrm2 48136* A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 23265. (Contributed by Zhi Wang, 30-Aug-2024.)
Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))}
 
Theoremdfnrm3 48137* A topological space is normal if any disjoint closed sets can be separated by neighborhoods. An alternate definition of df-nrm 23265. (Contributed by Zhi Wang, 2-Sep-2024.)
Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥 ∈ ((nei‘𝑗)‘𝑐)∃𝑦 ∈ ((nei‘𝑗)‘𝑑)(𝑥𝑦) = ∅)}
 
Theoremiscnrm3lem1 48138* Lemma for iscnrm3 48157. Subspace topology is a topology. (Contributed by Zhi Wang, 3-Sep-2024.)
(𝐽 ∈ Top → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐴 ((𝐽t 𝑥) ∈ Top ∧ 𝜑)))
 
Theoremiscnrm3lem2 48139* Lemma for iscnrm3 48157 proving a biconditional on restricted universal quantifications. (Contributed by Zhi Wang, 3-Sep-2024.)
(𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 → ((𝑤𝐷𝑣𝐸) → 𝜒)))    &   (𝜑 → (∀𝑤𝐷𝑣𝐸 𝜒 → ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜓)))       (𝜑 → (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 ↔ ∀𝑤𝐷𝑣𝐸 𝜒))
 
Theoremiscnrm3lem3 48140 Lemma for iscnrm3lem4 48141. (Contributed by Zhi Wang, 4-Sep-2024.)
(((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ((𝜑𝜒𝜃) ∧ 𝜓))
 
Theoremiscnrm3lem4 48141 Lemma for iscnrm3lem5 48142 and iscnrm3r 48153. (Contributed by Zhi Wang, 4-Sep-2024.)
(𝜂 → (𝜓𝜁))    &   ((𝜑𝜒𝜃) → 𝜂)    &   ((𝜑𝜒𝜃) → (𝜁𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
 
Theoremiscnrm3lem5 48142* Lemma for iscnrm3l 48156. (Contributed by Zhi Wang, 3-Sep-2024.)
((𝑥 = 𝑆𝑦 = 𝑇) → (𝜑𝜓))    &   ((𝑥 = 𝑆𝑦 = 𝑇) → (𝜒𝜃))    &   ((𝜏𝜂𝜁) → (𝑆𝑉𝑇𝑊))    &   ((𝜏𝜂𝜁) → ((𝜓𝜃) → 𝜎))       (𝜏 → (∀𝑥𝑉𝑦𝑊 (𝜑𝜒) → (𝜂 → (𝜁𝜎))))
 
Theoremiscnrm3lem6 48143* Lemma for iscnrm3lem7 48144. (Contributed by Zhi Wang, 5-Sep-2024.)
((𝜑 ∧ (𝑥𝑉𝑦𝑊) ∧ 𝜓) → 𝜒)       (𝜑 → (∃𝑥𝑉𝑦𝑊 𝜓𝜒))
 
Theoremiscnrm3lem7 48144* Lemma for iscnrm3rlem8 48152 and iscnrm3llem2 48155 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝑧 = 𝑍 → (𝜒𝜃))    &   (𝑤 = 𝑊 → (𝜃𝜏))    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵) ∧ 𝜓) → (𝑍𝐶𝑊𝐷𝜏))       (𝜑 → (∃𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧𝐶𝑤𝐷 𝜒))
 
Theoremiscnrm3rlem1 48145 Lemma for iscnrm3rlem2 48146. The hypothesis could be generalized to (𝜑 → (𝑆𝑇) ⊆ 𝑋). (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝑆𝑋)       (𝜑 → (𝑆𝑇) = (𝑆 ∩ (𝑋 ∖ (𝑆𝑇))))
 
Theoremiscnrm3rlem2 48146 Lemma for iscnrm3rlem3 48147. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)       (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ 𝑇)))))
 
Theoremiscnrm3rlem3 48147 Lemma for iscnrm3r 48153. The designed subspace is a subset of the original set; the two sets are closed sets in the subspace. (Contributed by Zhi Wang, 5-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽)) → (( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝒫 𝐽 ∧ (((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))) ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ∈ (Clsd‘(𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))))
 
Theoremiscnrm3rlem4 48148 Lemma for iscnrm3rlem8 48152. Given two disjoint subsets 𝑆 and 𝑇 of the underlying set of a topology 𝐽, if 𝑁 is a superset of (((cls‘𝐽)‘𝑆) ∖ 𝑇), then it is a superset of 𝑆. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑 → (𝑆𝑇) = ∅)    &   (𝜑 → (((cls‘𝐽)‘𝑆) ∖ 𝑇) ⊆ 𝑁)       (𝜑𝑆𝑁)
 
Theoremiscnrm3rlem5 48149 Lemma for iscnrm3rlem6 48150. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑𝑇 𝐽)       (𝜑 → ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))) ∈ 𝐽)
 
Theoremiscnrm3rlem6 48150 Lemma for iscnrm3rlem7 48151. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑𝑇 𝐽)    &   (𝜑𝑂 ⊆ ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))       (𝜑 → (𝑂 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))) ↔ 𝑂𝐽))
 
Theoremiscnrm3rlem7 48151 Lemma for iscnrm3rlem8 48152. Open neighborhoods in the subspace topology are open neighborhoods in the original topology given that the subspace is an open set in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝜑𝐽 ∈ Top)    &   (𝜑𝑆 𝐽)    &   (𝜑𝑇 𝐽)    &   (𝜑𝑂 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇)))))       (𝜑𝑂𝐽)
 
Theoremiscnrm3rlem8 48152* Lemma for iscnrm3r 48153. Disjoint open neighborhoods in the subspace topology are disjoint open neighborhoods in the original topology given that the subspace is an open set in the original topology. Therefore, given any two sets separated in the original topology and separated by open neighborhoods in the subspace topology, they must be separated by open neighborhoods in the original topology. (Contributed by Zhi Wang, 5-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) ∧ ((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅)) → (∃𝑙 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))∃𝑘 ∈ (𝐽t ( 𝐽 ∖ (((cls‘𝐽)‘𝑆) ∩ ((cls‘𝐽)‘𝑇))))((((cls‘𝐽)‘𝑆) ∖ ((cls‘𝐽)‘𝑇)) ⊆ 𝑙 ∧ (((cls‘𝐽)‘𝑇) ∖ ((cls‘𝐽)‘𝑆)) ⊆ 𝑘 ∧ (𝑙𝑘) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))
 
Theoremiscnrm3r 48153* Lemma for iscnrm3 48157. If all subspaces of a topology are normal, i.e., two disjoint closed sets can be separated by open neighborhoods, then in the original topology two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ Top → (∀𝑧 ∈ 𝒫 𝐽𝑐 ∈ (Clsd‘(𝐽t 𝑧))∀𝑑 ∈ (Clsd‘(𝐽t 𝑧))((𝑐𝑑) = ∅ → ∃𝑙 ∈ (𝐽t 𝑧)∃𝑘 ∈ (𝐽t 𝑧)(𝑐𝑙𝑑𝑘 ∧ (𝑙𝑘) = ∅)) → ((𝑆 ∈ 𝒫 𝐽𝑇 ∈ 𝒫 𝐽) → (((𝑆 ∩ ((cls‘𝐽)‘𝑇)) = ∅ ∧ (((cls‘𝐽)‘𝑆) ∩ 𝑇) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑆𝑛𝑇𝑚 ∧ (𝑛𝑚) = ∅)))))
 
Theoremiscnrm3llem1 48154 Lemma for iscnrm3l 48156. Closed sets in the subspace are subsets of the underlying set of the original topology. (Contributed by Zhi Wang, 4-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (𝐶 ∈ 𝒫 𝐽𝐷 ∈ 𝒫 𝐽))
 
Theoremiscnrm3llem2 48155* Lemma for iscnrm3l 48156. If there exist disjoint open neighborhoods in the original topology for two disjoint closed sets in a subspace, then they can be separated by open neighborhoods in the subspace topology. (Could shorten proof with ssin0 44561.) (Contributed by Zhi Wang, 5-Sep-2024.)
((𝐽 ∈ Top ∧ (𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) ∧ (𝐶𝐷) = ∅) → (∃𝑛𝐽𝑚𝐽 (𝐶𝑛𝐷𝑚 ∧ (𝑛𝑚) = ∅) → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))
 
Theoremiscnrm3l 48156* Lemma for iscnrm3 48157. Given a topology 𝐽, if two separated sets can be separated by open neighborhoods, then all subspaces of the topology 𝐽 are normal, i.e., two disjoint closed sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ Top → (∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅)) → ((𝑍 ∈ 𝒫 𝐽𝐶 ∈ (Clsd‘(𝐽t 𝑍)) ∧ 𝐷 ∈ (Clsd‘(𝐽t 𝑍))) → ((𝐶𝐷) = ∅ → ∃𝑙 ∈ (𝐽t 𝑍)∃𝑘 ∈ (𝐽t 𝑍)(𝐶𝑙𝐷𝑘 ∧ (𝑙𝑘) = ∅)))))
 
Theoremiscnrm3 48157* A completely normal topology is a topology in which two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅))))
 
Theoremiscnrm3v 48158* A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024.)
(𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛𝐽𝑚𝐽 (𝑠𝑛𝑡𝑚 ∧ (𝑛𝑚) = ∅))))
 
Theoremiscnrm4 48159* A completely normal topology is a topology in which two separated sets can be separated by neighborhoods. (Contributed by Zhi Wang, 5-Sep-2024.)
(𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ ((nei‘𝐽)‘𝑠)∃𝑚 ∈ ((nei‘𝐽)‘𝑡)(𝑛𝑚) = ∅)))
 
21.46.10  Preordered sets and directed sets using extensible structures
 
Theoremisprsd 48160* Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑 = (le‘𝐾))    &   (𝜑𝐾𝑉)       (𝜑 → (𝐾 ∈ Proset ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
 
21.46.11  Posets and lattices using extensible structures
 
21.46.11.1  Posets
 
Theoremlubeldm2 48161* Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝑈 = (lub‘𝐾)    &   (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧)))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremglbeldm2 48162* Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 26-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &   𝐺 = (glb‘𝐾)    &   (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremlubeldm2d 48163* Member of the domain of the least upper bound function of a poset. (Contributed by Zhi Wang, 28-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑 = (le‘𝐾))    &   (𝜑𝑈 = (lub‘𝐾))    &   ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧𝑥 𝑧))))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝑈 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremglbeldm2d 48164* Member of the domain of the greatest lower bound function of a poset. (Contributed by Zhi Wang, 29-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑 = (le‘𝐾))    &   (𝜑𝐺 = (glb‘𝐾))    &   ((𝜑𝑥𝐵) → (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))    &   (𝜑𝐾 ∈ Poset)       (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃𝑥𝐵 𝜓)))
 
Theoremlubsscl 48165 If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   (𝜑𝑇𝑆)    &   𝑈 = (lub‘𝐾)    &   (𝜑𝑆 ∈ dom 𝑈)    &   (𝜑 → (𝑈𝑆) ∈ 𝑇)       (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))
 
Theoremglbsscl 48166 If a subset of 𝑆 contains the GLB of 𝑆, then the two sets have the same GLB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   (𝜑𝑇𝑆)    &   𝐺 = (glb‘𝐾)    &   (𝜑𝑆 ∈ dom 𝐺)    &   (𝜑 → (𝐺𝑆) ∈ 𝑇)       (𝜑 → (𝑇 ∈ dom 𝐺 ∧ (𝐺𝑇) = (𝐺𝑆)))
 
Theoremlubprlem 48167 Lemma for lubprdm 48168 and lubpr 48169. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝑈 = (lub‘𝐾)       (𝜑 → (𝑆 ∈ dom 𝑈 ∧ (𝑈𝑆) = 𝑌))
 
Theoremlubprdm 48168 The set of two comparable elements in a poset has LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝑈 = (lub‘𝐾)       (𝜑𝑆 ∈ dom 𝑈)
 
Theoremlubpr 48169 The LUB of the set of two comparable elements in a poset is the greater one of the two. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝑈 = (lub‘𝐾)       (𝜑 → (𝑈𝑆) = 𝑌)
 
Theoremglbprlem 48170 Lemma for glbprdm 48171 and glbpr 48172. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝐺 = (glb‘𝐾)       (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺𝑆) = 𝑋))
 
Theoremglbprdm 48171 The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝐺 = (glb‘𝐾)       (𝜑𝑆 ∈ dom 𝐺)
 
Theoremglbpr 48172 The GLB of the set of two comparable elements in a poset is the less one of the two. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝜑𝐾 ∈ Poset)    &   𝐵 = (Base‘𝐾)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &    = (le‘𝐾)    &   (𝜑𝑋 𝑌)    &   (𝜑𝑆 = {𝑋, 𝑌})    &   𝐺 = (glb‘𝐾)       (𝜑 → (𝐺𝑆) = 𝑋)
 
Theoremjoindm2 48173* The join of any two elements always exists iff all unordered pairs have LUB. (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝑈 = (lub‘𝐾)    &    = (join‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝑈))
 
Theoremjoindm3 48174* The join of any two elements always exists iff all unordered pairs have LUB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝑈 = (lub‘𝐾)    &    = (join‘𝐾)    &    = (le‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑥 𝑧𝑦 𝑧) ∧ ∀𝑤𝐵 ((𝑥 𝑤𝑦 𝑤) → 𝑧 𝑤))))
 
Theoremmeetdm2 48175* The meet of any two elements always exists iff all unordered pairs have GLB. (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝐺 = (glb‘𝐾)    &    = (meet‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 {𝑥, 𝑦} ∈ dom 𝐺))
 
Theoremmeetdm3 48176* The meet of any two elements always exists iff all unordered pairs have GLB (expanded version). (Contributed by Zhi Wang, 25-Sep-2024.)
𝐵 = (Base‘𝐾)    &   (𝜑𝐾𝑉)    &   𝐺 = (glb‘𝐾)    &    = (meet‘𝐾)    &    = (le‘𝐾)       (𝜑 → (dom = (𝐵 × 𝐵) ↔ ∀𝑥𝐵𝑦𝐵 ∃!𝑧𝐵 ((𝑧 𝑥𝑧 𝑦) ∧ ∀𝑤𝐵 ((𝑤 𝑥𝑤 𝑦) → 𝑤 𝑧))))
 
Theoremposjidm 48177 Poset join is idempotent. latjidm 18457 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)       ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
 
Theoremposmidm 48178 Poset meet is idempotent. latmidm 18469 could be shortened by this. (Contributed by Zhi Wang, 27-Sep-2024.)
𝐵 = (Base‘𝐾)    &    = (meet‘𝐾)       ((𝐾 ∈ Poset ∧ 𝑋𝐵) → (𝑋 𝑋) = 𝑋)
 
21.46.11.2  Lattices
 
Theoremtoslat 48179 A toset is a lattice. (Contributed by Zhi Wang, 26-Sep-2024.)
(𝐾 ∈ Toset → 𝐾 ∈ Lat)
 
Theoremisclatd 48180* The predicate "is a complete lattice" (deduction form). (Contributed by Zhi Wang, 29-Sep-2024.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝑈 = (lub‘𝐾))    &   (𝜑𝐺 = (glb‘𝐾))    &   (𝜑𝐾 ∈ Poset)    &   ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝑈)    &   ((𝜑𝑠𝐵) → 𝑠 ∈ dom 𝐺)       (𝜑𝐾 ∈ CLat)
 
21.46.11.3  Subset order structures
 
Theoremintubeu 48181* Existential uniqueness of the least upper bound. (Contributed by Zhi Wang, 28-Sep-2024.)
(𝐶𝐵 → ((𝐴𝐶 ∧ ∀𝑦𝐵 (𝐴𝑦𝐶𝑦)) ↔ 𝐶 = {𝑥𝐵𝐴𝑥}))
 
Theoremunilbeu 48182* Existential uniqueness of the greatest lower bound. (Contributed by Zhi Wang, 29-Sep-2024.)
(𝐶𝐵 → ((𝐶𝐴 ∧ ∀𝑦𝐵 (𝑦𝐴𝑦𝐶)) ↔ 𝐶 = {𝑥𝐵𝑥𝐴}))
 
Theoremipolublem 48183* Lemma for ipolubdm 48184 and ipolub 48185. (Contributed by Zhi Wang, 28-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &    = (le‘𝐼)       ((𝜑𝑋𝐹) → (( 𝑆𝑋 ∧ ∀𝑧𝐹 ( 𝑆𝑧𝑋𝑧)) ↔ (∀𝑦𝑆 𝑦 𝑋 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑦 𝑧𝑋 𝑧))))
 
Theoremipolubdm 48184* The domain of the LUB of the inclusion poset. (Contributed by Zhi Wang, 28-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})       (𝜑 → (𝑆 ∈ dom 𝑈𝑇𝐹))
 
Theoremipolub 48185* The LUB of the inclusion poset. (hypotheses "ipolub.s" and "ipolub.t" could be eliminated with 𝑆 ∈ dom 𝑈.) Could be significantly shortened if poslubdg 18409 is in quantified form. mrelatlub 18557 could potentially be shortened using this. See mrelatlubALT 48192. (Contributed by Zhi Wang, 28-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹 𝑆𝑥})    &   (𝜑𝑇𝐹)       (𝜑 → (𝑈𝑆) = 𝑇)
 
Theoremipoglblem 48186* Lemma for ipoglbdm 48187 and ipoglb 48188. (Contributed by Zhi Wang, 29-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &    = (le‘𝐼)       ((𝜑𝑋𝐹) → ((𝑋 𝑆 ∧ ∀𝑧𝐹 (𝑧 𝑆𝑧𝑋)) ↔ (∀𝑦𝑆 𝑋 𝑦 ∧ ∀𝑧𝐹 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑋))))
 
Theoremipoglbdm 48187* The domain of the GLB of the inclusion poset. (Contributed by Zhi Wang, 29-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝐺 = (glb‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})       (𝜑 → (𝑆 ∈ dom 𝐺𝑇𝐹))
 
Theoremipoglb 48188* The GLB of the inclusion poset. (hypotheses "ipolub.s" and "ipoglb.t" could be eliminated with 𝑆 ∈ dom 𝐺.) Could be significantly shortened if posglbdg 18410 is in quantified form. mrelatglb 18555 could potentially be shortened using this. See mrelatglbALT 48193. (Contributed by Zhi Wang, 29-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐹𝑉)    &   (𝜑𝑆𝐹)    &   (𝜑𝐺 = (glb‘𝐼))    &   (𝜑𝑇 = {𝑥𝐹𝑥 𝑆})    &   (𝜑𝑇𝐹)       (𝜑 → (𝐺𝑆) = 𝑇)
 
Theoremipolub0 48189 The LUB of the empty set is the intersection of the base. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑 𝐹𝐹)    &   (𝜑𝐹𝑉)       (𝜑 → (𝑈‘∅) = 𝐹)
 
Theoremipolub00 48190 The LUB of the empty set is the empty set if it is contained. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝑈 = (lub‘𝐼))    &   (𝜑 → ∅ ∈ 𝐹)       (𝜑 → (𝑈‘∅) = ∅)
 
Theoremipoglb0 48191 The GLB of the empty set is the union of the base. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐹)    &   (𝜑𝐺 = (glb‘𝐼))    &   (𝜑 𝐹𝐹)       (𝜑 → (𝐺‘∅) = 𝐹)
 
TheoremmrelatlubALT 48192 Least upper bounds in a Moore space are realized by the closure of the union. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐼 = (toInc‘𝐶)    &   𝐹 = (mrCls‘𝐶)    &   𝐿 = (lub‘𝐼)       ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶) → (𝐿𝑈) = (𝐹 𝑈))
 
TheoremmrelatglbALT 48193 Greatest lower bounds in a Moore space are realized by intersections. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Zhi Wang, 29-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐼 = (toInc‘𝐶)    &   𝐺 = (glb‘𝐼)       ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝐶𝑈 ≠ ∅) → (𝐺𝑈) = 𝑈)
 
Theoremmreclat 48194 A Moore space is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐶)       (𝐶 ∈ (Moore‘𝑋) → 𝐼 ∈ CLat)
 
Theoremtopclat 48195 A topology is a complete lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)       (𝐽 ∈ Top → 𝐼 ∈ CLat)
 
Theoremtoplatglb0 48196 The empty intersection in a topology is realized by the base set. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   𝐺 = (glb‘𝐼)       (𝜑 → (𝐺‘∅) = 𝐽)
 
Theoremtoplatlub 48197 Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝑆𝐽)    &   𝑈 = (lub‘𝐼)       (𝜑 → (𝑈𝑆) = 𝑆)
 
Theoremtoplatglb 48198 Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝑆𝐽)    &   𝐺 = (glb‘𝐼)    &   (𝜑𝑆 ≠ ∅)       (𝜑 → (𝐺𝑆) = ((int‘𝐽)‘ 𝑆))
 
Theoremtoplatjoin 48199 Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝐴𝐽)    &   (𝜑𝐵𝐽)    &    = (join‘𝐼)       (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
 
Theoremtoplatmeet 48200 Meets in a topology are realized by intersections. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐼 = (toInc‘𝐽)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝐴𝐽)    &   (𝜑𝐵𝐽)    &    = (meet‘𝐼)       (𝜑 → (𝐴 𝐵) = (𝐴𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48424
  Copyright terms: Public domain < Previous  Next >