![]() |
Metamath
Proof Explorer Theorem List (p. 482 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mndpfsupp 48101 | A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
⊢ 𝑅 = (Base‘𝑀) ⇒ ⊢ (((𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑀) ∧ 𝐵 finSupp (0g‘𝑀))) → (𝐴 ∘f (+g‘𝑀)𝐵) finSupp (0g‘𝑀)) | ||
Theorem | scmsuppfi 48102* | The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.) |
⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) | ||
Theorem | scmfsupp 48103* | A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) | ||
Theorem | suppmptcfin 48104* | The support of a mapping with value 0 except of one is finite. (Contributed by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 supp 0 ) ∈ Fin) | ||
Theorem | mptcfsupp 48105* | A mapping with value 0 except of one is finitely supported. (Contributed by AV, 9-Jun-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → 𝐹 finSupp 0 ) | ||
Theorem | fsuppmptdmf 48106* | A mapping with a finite domain is finitely supported. (Contributed by AV, 4-Sep-2019.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | lmodvsmdi 48107 | Multiple distributive law for scalar product (left-distributivity). (Contributed by AV, 5-Sep-2019.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ↑ = (.g‘𝑊) & ⊢ 𝐸 = (.g‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉)) → (𝑅 · (𝑁 ↑ 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)) | ||
Theorem | gsumlsscl 48108* | Closure of a group sum in a linear subspace: A (finitely supported) sum of scalar multiplications of vectors of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝑆 = (LSubSp‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑍 ∈ 𝑆 ∧ 𝑉 ⊆ 𝑍) → ((𝐹 ∈ (𝐵 ↑m 𝑉) ∧ 𝐹 finSupp (0g‘𝑅)) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑍)) | ||
Theorem | assaascl0 48109 | The scalar 0 embedded into an associative algebra corresponds to the 0 of the associative algebra. (Contributed by AV, 31-Jul-2019.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) ⇒ ⊢ (𝜑 → (𝐴‘(0g‘𝐹)) = (0g‘𝑊)) | ||
Theorem | assaascl1 48110 | The scalar 1 embedded into an associative algebra corresponds to the 1 of the an associative algebra. (Contributed by AV, 31-Jul-2019.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ AssAlg) ⇒ ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) | ||
Theorem | ply1vr1smo 48111 | The variable in a polynomial expressed as scaled monomial. (Contributed by AV, 12-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑋 = (var1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( 1 · (1 ↑ 𝑋)) = 𝑋) | ||
Theorem | ply1sclrmsm 48112 | The ring multiplication of a polynomial with a scalar polynomial is equal to the scalar multiplication of the polynomial with the corresponding scalar. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐸 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ × = (.r‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝑍 ∈ 𝐸) → ((𝐴‘𝐹) × 𝑍) = (𝐹 · 𝑍)) | ||
Theorem | coe1id 48113* | Coefficient vector of the unit polynomial. (Contributed by AV, 9-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐼 = (1r‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (coe1‘𝐼) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 1 , 0 ))) | ||
Theorem | coe1sclmulval 48114 | The value of the coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝑆 = ( ·𝑠 ‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝐵) ∧ 𝑁 ∈ ℕ0) → ((coe1‘(𝑌𝑆𝑍))‘𝑁) = (𝑌 · ((coe1‘𝑍)‘𝑁))) | ||
Theorem | ply1mulgsumlem1 48115* | Lemma 1 for ply1mulgsum 48119. (Contributed by AV, 19-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴‘𝑛) = (0g‘𝑅) ∧ (𝐶‘𝑛) = (0g‘𝑅)))) | ||
Theorem | ply1mulgsumlem2 48116* | Lemma 2 for ply1mulgsum 48119. (Contributed by AV, 19-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑅 Σg (𝑙 ∈ (0...𝑛) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑛 − 𝑙))))) = (0g‘𝑅))) | ||
Theorem | ply1mulgsumlem3 48117* | Lemma 3 for ply1mulgsum 48119. (Contributed by AV, 20-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙)))))) finSupp (0g‘𝑅)) | ||
Theorem | ply1mulgsumlem4 48118* | Lemma 4 for ply1mulgsum 48119. (Contributed by AV, 19-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) | ||
Theorem | ply1mulgsum 48119* | The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ × = (.r‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ ∗ = (.r‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (𝐾 × 𝐿) = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑅 Σg (𝑙 ∈ (0...𝑘) ↦ ((𝐴‘𝑙) ∗ (𝐶‘(𝑘 − 𝑙))))) · (𝑘 ↑ 𝑋))))) | ||
Theorem | evl1at0 48120 | Polynomial evaluation for the 0 scalar. (Contributed by AV, 10-Aug-2019.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ CRing → ((𝑂‘𝑍)‘ 0 ) = 0 ) | ||
Theorem | evl1at1 48121 | Polynomial evaluation for the 1 scalar. (Contributed by AV, 10-Aug-2019.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (1r‘𝑃) ⇒ ⊢ (𝑅 ∈ CRing → ((𝑂‘𝐼)‘ 1 ) = 1 ) | ||
Theorem | linply1 48122 | A term of the form 𝑥 − 𝐶 is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem 26224). (Contributed by AV, 3-Jul-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐵) | ||
Theorem | lineval 48123 | A term of the form 𝑥 − 𝐶 evaluated for 𝑥 = 𝑉 results in 𝑉 − 𝐶 (part of ply1remlem 26224). (Contributed by AV, 3-Jul-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ 𝑂 = (eval1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑉 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝑂‘𝐺)‘𝑉) = (𝑉(-g‘𝑅)𝐶)) | ||
Theorem | linevalexample 48124 | The polynomial 𝑥 − 3 over ℤ evaluated for 𝑥 = 5 results in 2. (Contributed by AV, 3-Jul-2019.) |
⊢ 𝑃 = (Poly1‘ℤring) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘ℤring) & ⊢ − = (-g‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐺 = (𝑋 − (𝐴‘3)) & ⊢ 𝑂 = (eval1‘ℤring) ⇒ ⊢ ((𝑂‘(𝑋 − (𝐴‘3)))‘5) = 2 | ||
In the following, alternative definitions for diagonal and scalar matrices are provided. These definitions define diagonal and scalar matrices as extensible structures, whereas Definitions df-dmat 22517 and df-scmat 22518 define diagonal and scalar matrices as sets. | ||
Syntax | cdmatalt 48125 | Alternative notation for the algebra of diagonal matrices. |
class DMatALT | ||
Syntax | cscmatalt 48126 | Alternative notation for the algebra of scalar matrices. |
class ScMatALT | ||
Definition | df-dmatalt 48127* | Define the set of n x n diagonal (square) matrices over a set (usually a ring) r, see definition in [Roman] p. 4 or Definition 3.12 in [Hefferon] p. 240. (Contributed by AV, 8-Dec-2019.) |
⊢ DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) | ||
Definition | df-scmatalt 48128* | Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in [Connell] p. 57: "A scalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cIn". (Contributed by AV, 8-Dec-2019.) |
⊢ ScMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))})) | ||
Theorem | dmatALTval 48129* | The algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMatALT 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → 𝐷 = (𝐴 ↾s {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )})) | ||
Theorem | dmatALTbas 48130* | The base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. the set of all 𝑁 x 𝑁 diagonal matrices over the ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMatALT 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (Base‘𝐷) = {𝑚 ∈ 𝐵 ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = 0 )}) | ||
Theorem | dmatALTbasel 48131* | An element of the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over a ring 𝑅, i.e. an 𝑁 x 𝑁 diagonal matrix over the ring 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMatALT 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ V) → (𝑀 ∈ (Base‘𝐷) ↔ (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )))) | ||
Theorem | dmatbas 48132 | The set of all 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅 is the base set of the algebra of 𝑁 x 𝑁 diagonal matrices over (the ring) 𝑅. (Contributed by AV, 8-Dec-2019.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = (𝑁 DMat 𝑅) ⇒ ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐷 = (Base‘(𝑁 DMatALT 𝑅))) | ||
According to Wikipedia ("Linear combination", 29-Mar-2019,
https://en.wikipedia.org/wiki/Linear_combination) "In mathematics, a
linear combination is an expression constructed from a set of terms by
multiplying each term by a constant and adding the results (e.g., a linear
combination of x and y would be any expression of the form ax + by, where a
and b are constants). The concept of linear combinations is central to
linear algebra and related fields of mathematics." In linear algebra, these
"terms" are "vectors" (elements from vector spaces or left modules), and the
constants are elements of the underlying field resp. ring. This corresponds
to the definition in [Lang] p. 129: "Let M be a module over a ring A and let
S be a subset of M. By a linear combination of elements of S (with
coefficients in A) one means a sum ∑x ∈S
axx where {ax} is a set of elements of A, ...". In the
definition in [Lang] p. 129, it is additionally claimed that "..., almost all
of which [elements of A] are equal to 0.". This is not necessarily required
in the following definition df-linc 48135, but it is essential if additions and
scalar multiplications of linear combinations are considered. Therefore, we
define the set of all linear combinations with finite support in df-lco 48136,
so that we can show that such sets are submodules of the corresponding
modules, see lincolss 48163.
| ||
Syntax | clinc 48133 | Extend class notation with the operation constructing a linear combination (of vectors from a left module). |
class linC | ||
Syntax | clinco 48134 | Extend class notation with the operation constructing a set of linear combinations (of vectors from a left module) with finite support. |
class LinCo | ||
Definition | df-linc 48135* | Define the operation constructing a linear combination. Although this definition is taylored for linear combinations of vectors from left modules, it can be used for any structure having a Base, Scalar s and a scalar multiplication ·𝑠. (Contributed by AV, 29-Mar-2019.) |
⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠 ‘𝑚)𝑥))))) | ||
Definition | df-lco 48136* | Define the operation constructing the set of all linear combinations for a set of vectors. (Contributed by AV, 31-Mar-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))}) | ||
Theorem | lincop 48137* | A linear combination as operation. (Contributed by AV, 30-Mar-2019.) |
⊢ (𝑀 ∈ 𝑋 → ( linC ‘𝑀) = (𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑀) ↦ (𝑀 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠 ‘𝑀)𝑥))))) | ||
Theorem | lincval 48138* | The value of a linear combination. (Contributed by AV, 30-Mar-2019.) |
⊢ ((𝑀 ∈ 𝑋 ∧ 𝑆 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑆( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑥 ∈ 𝑉 ↦ ((𝑆‘𝑥)( ·𝑠 ‘𝑀)𝑥)))) | ||
Theorem | dflinc2 48139* | Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.) |
⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘f ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) | ||
Theorem | lcoop 48140* | A linear combination as operation. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) | ||
Theorem | lcoval 48141* | The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) | ||
Theorem | lincfsuppcl 48142 | A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵) | ||
Theorem | linccl 48143 | A linear combination of vectors is a vector. (Contributed by AV, 31-Mar-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉 ⊆ 𝐵 ∧ 𝑆 ∈ (𝑅 ↑m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵) | ||
Theorem | lincval0 48144 | The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) | ||
Theorem | lincvalsng 48145 | The linear combination over a singleton. (Contributed by AV, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) | ||
Theorem | lincvalsn 48146 | The linear combination over a singleton. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 25-May-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐹 = {〈𝑉, 𝑌〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝐹( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) | ||
Theorem | lincvalpr 48147 | The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝐹 = {〈𝑉, 𝑋〉, 〈𝑊, 𝑌〉} ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊) ∧ (𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅) ∧ (𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊))) | ||
Theorem | lincval1 48148 | The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀)) | ||
Theorem | lcosn0 48149 | Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) | ||
Theorem | lincvalsc0 48150* | The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) | ||
Theorem | lcoc0 48151* | Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) | ||
Theorem | linc0scn0 48152* | If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) | ||
Theorem | lincdifsn 48153 | A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹‘𝑋) · 𝑋))) | ||
Theorem | linc1 48154* | A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋) | ||
Theorem | lincellss 48155 | A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) | ||
Theorem | lco0 48156 | The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019.) |
⊢ (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g‘𝑀)}) | ||
Theorem | lcoel0 48157 | The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g‘𝑀) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincsum 48158 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ + = (+g‘𝑀) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑌 = (𝐵( linC ‘𝑀)𝑉) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑋 + 𝑌) = ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉)) | ||
Theorem | lincscm 48159* | A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
⊢ ∙ = ( ·𝑠 ‘𝑀) & ⊢ · = (.r‘(Scalar‘𝑀)) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝑆 · (𝐴‘𝑥))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 ∙ 𝑋) = (𝐹( linC ‘𝑀)𝑉)) | ||
Theorem | lincsumcl 48160 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincscmcl 48161 | The multiplication of a linear combination with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 11-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincsumscmcl 48162 | The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019.) |
⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉) ∧ 𝐵 ∈ (𝑀 LinCo 𝑉))) → ((𝐶 · 𝐷) + 𝐵) ∈ (𝑀 LinCo 𝑉)) | ||
Theorem | lincolss 48163 | According to the statement in [Lang] p. 129, the set (LSubSp‘𝑀) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSp‘𝑀). (Contributed by AV, 12-Apr-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) | ||
Theorem | ellcoellss 48164* | Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥 ∈ 𝑆) | ||
Theorem | lcoss 48165 | A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉)) | ||
Theorem | lspsslco 48166 | Lemma for lspeqlco 48168. (Contributed by AV, 17-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((LSpan‘𝑀)‘𝑉) ⊆ (𝑀 LinCo 𝑉)) | ||
Theorem | lcosslsp 48167 | Lemma for lspeqlco 48168. (Contributed by AV, 20-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) | ||
Theorem | lspeqlco 48168 | Equivalence of a span of a set of vectors of a left module defined as the intersection of all linear subspaces which each contain every vector in that set (see df-lsp 20993) and as the set of all linear combinations of the vectors of the set with finite support. (Contributed by AV, 20-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = ((LSpan‘𝑀)‘𝑉)) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said
to be linearly independent (over [the ring] A) if whenever we have a
linear combination ∑x ∈S axx which is equal to
0, then ax=0 for all x∈S." This definition does not care for
the finiteness of the set S (because the definition of a linear combination
in [Lang] p.129 does already assure that only a finite number of coefficients
can be 0 in the sum). Our definition df-lininds 48171 does also neither claim that
the subset must be finite, nor that almost all coefficients within the linear
combination are 0. If this is required, it must be explicitly stated as
precondition in the corresponding theorems. | ||
Syntax | clininds 48169 | Extend class notation with the relation between a module and its linearly independent subsets. |
class linIndS | ||
Syntax | clindeps 48170 | Extend class notation with the relation between a module and its linearly dependent subsets. |
class linDepS | ||
Definition | df-lininds 48171* | Define the relation between a module and its linearly independent subsets. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | ||
Theorem | rellininds 48172 | The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
⊢ Rel linIndS | ||
Definition | df-lindeps 48173* | Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019.) |
⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | ||
Theorem | linindsv 48174 | The classes of the module and its linearly independent subsets are sets. (Contributed by AV, 13-Apr-2019.) |
⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | ||
Theorem | islininds 48175* | The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
Theorem | linindsi 48176* | The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
Theorem | linindslinci 48177* | The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ) | ||
Theorem | islinindfis 48178* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
Theorem | islinindfiss 48179* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
Theorem | linindscl 48180 | A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) | ||
Theorem | lindepsnlininds 48181 | A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) | ||
Theorem | islindeps 48182* | The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ))) | ||
Theorem | lincext1 48183* | Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) | ||
Theorem | lincext2 48184* | Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) | ||
Theorem | lincext3 48185* | Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠 ‘𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍) | ||
Theorem | lindslinindsimp1 48186* | Implication 1 for lindslininds 48193. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) | ||
Theorem | lindslinindimp2lem1 48187* | Lemma 1 for lindslinindsimp2 48192. (Contributed by AV, 25-Apr-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) | ||
Theorem | lindslinindimp2lem2 48188* | Lemma 2 for lindslinindsimp2 48192. (Contributed by AV, 25-Apr-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) | ||
Theorem | lindslinindimp2lem3 48189* | Lemma 3 for lindslinindsimp2 48192. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
Theorem | lindslinindimp2lem4 48190* | Lemma 4 for lindslinindsimp2 48192. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠 ‘𝑀)𝑦))) = (𝑌( ·𝑠 ‘𝑀)𝑥)) | ||
Theorem | lindslinindsimp2lem5 48191* | Lemma 5 for lindslinindsimp2 48192. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 ))) | ||
Theorem | lindslinindsimp2 48192* | Implication 2 for lindslininds 48193. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
Theorem | lindslininds 48193 | Equivalence of definitions df-linds 21850 and df-lininds 48171 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ 𝑆 ∈ (LIndS‘𝑀))) | ||
Theorem | linds0 48194 | The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ (𝑀 ∈ 𝑉 → ∅ linIndS 𝑀) | ||
Theorem | el0ldep 48195 | A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
⊢ (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
Theorem | el0ldepsnzr 48196 | A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
Theorem | lindsrng01 48197 | Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20894), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀) | ||
Theorem | lindszr 48198 | Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019.) |
⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀) | ||
Theorem | snlindsntorlem 48199* | Lemma for snlindsntor 48200. (Contributed by AV, 15-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) | ||
Theorem | snlindsntor 48200* | A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎 ∈ 𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |