| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pgind | Structured version Visualization version GIF version | ||
| Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024.) |
| Ref | Expression |
|---|---|
| pgind.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| pgind.2 | ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) |
| pgind.3 | ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| pgind | ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2181 | . 2 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 2 | 19.8a 2181 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑥∃𝑦𝜑) | |
| 3 | nfe1 2150 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦𝜑 | |
| 4 | nfe1 2150 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 5 | 4 | nfex 2324 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦𝜑 |
| 6 | pgind.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 7 | pgind.2 | . . 3 ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) | |
| 8 | nfa1 2151 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) | |
| 9 | nfra1 3266 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 | |
| 10 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑦𝜓 | |
| 11 | 9, 10 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑦(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
| 12 | 11 | nfal 2323 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
| 13 | pgind.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) | |
| 14 | 12, 13 | exlimi 2217 | . . . 4 ⊢ (∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| 15 | 8, 14 | exlimi 2217 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| 16 | 3, 5, 6, 7, 15 | pgindnf 49580 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| 17 | 1, 2, 16 | 3syl 18 | 1 ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 ∪ cun 3924 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 Pgcpg 49573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2376 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 df-setrecs 49548 df-pg 49574 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |