Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgind Structured version   Visualization version   GIF version

Theorem pgind 49845
Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024.)
Hypotheses
Ref Expression
pgind.1 (𝑥 = 𝑦 → (𝜓𝜒))
pgind.2 (𝑦 = 𝐴 → (𝜒𝜃))
pgind.3 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
Assertion
Ref Expression
pgind (𝜑 → (𝐴 ∈ Pg → 𝜃))
Distinct variable groups:   𝑦,𝐴   𝜒,𝑥   𝜓,𝑦   𝜃,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)   𝐴(𝑥)

Proof of Theorem pgind
StepHypRef Expression
1 19.8a 2186 . 2 (𝜑 → ∃𝑦𝜑)
2 19.8a 2186 . 2 (∃𝑦𝜑 → ∃𝑥𝑦𝜑)
3 nfe1 2155 . . 3 𝑥𝑥𝑦𝜑
4 nfe1 2155 . . . 4 𝑦𝑦𝜑
54nfex 2327 . . 3 𝑦𝑥𝑦𝜑
6 pgind.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
7 pgind.2 . . 3 (𝑦 = 𝐴 → (𝜒𝜃))
8 nfa1 2156 . . . 4 𝑥𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
9 nfra1 3257 . . . . . . 7 𝑦𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒
10 nfv 1915 . . . . . . 7 𝑦𝜓
119, 10nfim 1897 . . . . . 6 𝑦(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
1211nfal 2326 . . . . 5 𝑦𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
13 pgind.3 . . . . 5 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
1412, 13exlimi 2222 . . . 4 (∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
158, 14exlimi 2222 . . 3 (∃𝑥𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
163, 5, 6, 7, 15pgindnf 49844 . 2 (∃𝑥𝑦𝜑 → (𝐴 ∈ Pg → 𝜃))
171, 2, 163syl 18 1 (𝜑 → (𝐴 ∈ Pg → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2113  wral 3048  cun 3896  cfv 6488  1st c1st 7927  2nd c2nd 7928  Pgcpg 49837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fv 6496  df-1st 7929  df-2nd 7930  df-setrecs 49812  df-pg 49838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator