![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pgind | Structured version Visualization version GIF version |
Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024.) |
Ref | Expression |
---|---|
pgind.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
pgind.2 | ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) |
pgind.3 | ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
Ref | Expression |
---|---|
pgind | ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2182 | . 2 ⊢ (𝜑 → ∃𝑦𝜑) | |
2 | 19.8a 2182 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑥∃𝑦𝜑) | |
3 | nfe1 2151 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦𝜑 | |
4 | nfe1 2151 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
5 | 4 | nfex 2328 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦𝜑 |
6 | pgind.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
7 | pgind.2 | . . 3 ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) | |
8 | nfa1 2152 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) | |
9 | nfra1 3290 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 | |
10 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑦𝜓 | |
11 | 9, 10 | nfim 1895 | . . . . . 6 ⊢ Ⅎ𝑦(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
12 | 11 | nfal 2327 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
13 | pgind.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) | |
14 | 12, 13 | exlimi 2218 | . . . 4 ⊢ (∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
15 | 8, 14 | exlimi 2218 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
16 | 3, 5, 6, 7, 15 | pgindnf 48808 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → (𝐴 ∈ Pg → 𝜃)) |
17 | 1, 2, 16 | 3syl 18 | 1 ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∪ cun 3974 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 Pgcpg 48801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 df-setrecs 48776 df-pg 48802 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |