Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgind Structured version   Visualization version   GIF version

Theorem pgind 49710
Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024.)
Hypotheses
Ref Expression
pgind.1 (𝑥 = 𝑦 → (𝜓𝜒))
pgind.2 (𝑦 = 𝐴 → (𝜒𝜃))
pgind.3 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
Assertion
Ref Expression
pgind (𝜑 → (𝐴 ∈ Pg → 𝜃))
Distinct variable groups:   𝑦,𝐴   𝜒,𝑥   𝜓,𝑦   𝜃,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)   𝐴(𝑥)

Proof of Theorem pgind
StepHypRef Expression
1 19.8a 2182 . 2 (𝜑 → ∃𝑦𝜑)
2 19.8a 2182 . 2 (∃𝑦𝜑 → ∃𝑥𝑦𝜑)
3 nfe1 2151 . . 3 𝑥𝑥𝑦𝜑
4 nfe1 2151 . . . 4 𝑦𝑦𝜑
54nfex 2323 . . 3 𝑦𝑥𝑦𝜑
6 pgind.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
7 pgind.2 . . 3 (𝑦 = 𝐴 → (𝜒𝜃))
8 nfa1 2152 . . . 4 𝑥𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
9 nfra1 3262 . . . . . . 7 𝑦𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒
10 nfv 1914 . . . . . . 7 𝑦𝜓
119, 10nfim 1896 . . . . . 6 𝑦(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
1211nfal 2322 . . . . 5 𝑦𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
13 pgind.3 . . . . 5 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
1412, 13exlimi 2218 . . . 4 (∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
158, 14exlimi 2218 . . 3 (∃𝑥𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
163, 5, 6, 7, 15pgindnf 49709 . 2 (∃𝑥𝑦𝜑 → (𝐴 ∈ Pg → 𝜃))
171, 2, 163syl 18 1 (𝜑 → (𝐴 ∈ Pg → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3045  cun 3915  cfv 6514  1st c1st 7969  2nd c2nd 7970  Pgcpg 49702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2371  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971  df-2nd 7972  df-setrecs 49677  df-pg 49703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator