| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pgind | Structured version Visualization version GIF version | ||
| Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024.) |
| Ref | Expression |
|---|---|
| pgind.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| pgind.2 | ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) |
| pgind.3 | ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| pgind | ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2182 | . 2 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 2 | 19.8a 2182 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑥∃𝑦𝜑) | |
| 3 | nfe1 2151 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦𝜑 | |
| 4 | nfe1 2151 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 5 | 4 | nfex 2323 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦𝜑 |
| 6 | pgind.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 7 | pgind.2 | . . 3 ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) | |
| 8 | nfa1 2152 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) | |
| 9 | nfra1 3253 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 | |
| 10 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑦𝜓 | |
| 11 | 9, 10 | nfim 1896 | . . . . . 6 ⊢ Ⅎ𝑦(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
| 12 | 11 | nfal 2322 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
| 13 | pgind.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) | |
| 14 | 12, 13 | exlimi 2218 | . . . 4 ⊢ (∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| 15 | 8, 14 | exlimi 2218 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| 16 | 3, 5, 6, 7, 15 | pgindnf 49702 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| 17 | 1, 2, 16 | 3syl 18 | 1 ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∪ cun 3903 ‘cfv 6486 1st c1st 7929 2nd c2nd 7930 Pgcpg 49695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7931 df-2nd 7932 df-setrecs 49670 df-pg 49696 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |