Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgind Structured version   Visualization version   GIF version

Theorem pgind 48809
Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024.)
Hypotheses
Ref Expression
pgind.1 (𝑥 = 𝑦 → (𝜓𝜒))
pgind.2 (𝑦 = 𝐴 → (𝜒𝜃))
pgind.3 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
Assertion
Ref Expression
pgind (𝜑 → (𝐴 ∈ Pg → 𝜃))
Distinct variable groups:   𝑦,𝐴   𝜒,𝑥   𝜓,𝑦   𝜃,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑥)   𝐴(𝑥)

Proof of Theorem pgind
StepHypRef Expression
1 19.8a 2182 . 2 (𝜑 → ∃𝑦𝜑)
2 19.8a 2182 . 2 (∃𝑦𝜑 → ∃𝑥𝑦𝜑)
3 nfe1 2151 . . 3 𝑥𝑥𝑦𝜑
4 nfe1 2151 . . . 4 𝑦𝑦𝜑
54nfex 2328 . . 3 𝑦𝑥𝑦𝜑
6 pgind.1 . . 3 (𝑥 = 𝑦 → (𝜓𝜒))
7 pgind.2 . . 3 (𝑦 = 𝐴 → (𝜒𝜃))
8 nfa1 2152 . . . 4 𝑥𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
9 nfra1 3290 . . . . . . 7 𝑦𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒
10 nfv 1913 . . . . . . 7 𝑦𝜓
119, 10nfim 1895 . . . . . 6 𝑦(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
1211nfal 2327 . . . . 5 𝑦𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓)
13 pgind.3 . . . . 5 (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
1412, 13exlimi 2218 . . . 4 (∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
158, 14exlimi 2218 . . 3 (∃𝑥𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st𝑥) ∪ (2nd𝑥))𝜒𝜓))
163, 5, 6, 7, 15pgindnf 48808 . 2 (∃𝑥𝑦𝜑 → (𝐴 ∈ Pg → 𝜃))
171, 2, 163syl 18 1 (𝜑 → (𝐴 ∈ Pg → 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wex 1777  wcel 2108  wral 3067  cun 3974  cfv 6573  1st c1st 8028  2nd c2nd 8029  Pgcpg 48801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031  df-setrecs 48776  df-pg 48802
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator