| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pgind | Structured version Visualization version GIF version | ||
| Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024.) |
| Ref | Expression |
|---|---|
| pgind.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| pgind.2 | ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) |
| pgind.3 | ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| pgind | ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2186 | . 2 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 2 | 19.8a 2186 | . 2 ⊢ (∃𝑦𝜑 → ∃𝑥∃𝑦𝜑) | |
| 3 | nfe1 2155 | . . 3 ⊢ Ⅎ𝑥∃𝑥∃𝑦𝜑 | |
| 4 | nfe1 2155 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 5 | 4 | nfex 2327 | . . 3 ⊢ Ⅎ𝑦∃𝑥∃𝑦𝜑 |
| 6 | pgind.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 7 | pgind.2 | . . 3 ⊢ (𝑦 = 𝐴 → (𝜒 ↔ 𝜃)) | |
| 8 | nfa1 2156 | . . . 4 ⊢ Ⅎ𝑥∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) | |
| 9 | nfra1 3257 | . . . . . . 7 ⊢ Ⅎ𝑦∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 | |
| 10 | nfv 1915 | . . . . . . 7 ⊢ Ⅎ𝑦𝜓 | |
| 11 | 9, 10 | nfim 1897 | . . . . . 6 ⊢ Ⅎ𝑦(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
| 12 | 11 | nfal 2326 | . . . . 5 ⊢ Ⅎ𝑦∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓) |
| 13 | pgind.3 | . . . . 5 ⊢ (𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) | |
| 14 | 12, 13 | exlimi 2222 | . . . 4 ⊢ (∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| 15 | 8, 14 | exlimi 2222 | . . 3 ⊢ (∃𝑥∃𝑦𝜑 → ∀𝑥(∀𝑦 ∈ ((1st ‘𝑥) ∪ (2nd ‘𝑥))𝜒 → 𝜓)) |
| 16 | 3, 5, 6, 7, 15 | pgindnf 49844 | . 2 ⊢ (∃𝑥∃𝑦𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| 17 | 1, 2, 16 | 3syl 18 | 1 ⊢ (𝜑 → (𝐴 ∈ Pg → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 ∪ cun 3896 ‘cfv 6488 1st c1st 7927 2nd c2nd 7928 Pgcpg 49837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-13 2374 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fv 6496 df-1st 7929 df-2nd 7930 df-setrecs 49812 df-pg 49838 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |