| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sepex | Structured version Visualization version GIF version | ||
| Description: Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep 5294. Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by Matthew House, 19-Sep-2025.) |
| Ref | Expression |
|---|---|
| sepex | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sepexlem 5297 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑤∀𝑥(𝑥 ∈ 𝑤 ↔ 𝜑)) | |
| 2 | biimpr 220 | . . . 4 ⊢ ((𝑥 ∈ 𝑤 ↔ 𝜑) → (𝜑 → 𝑥 ∈ 𝑤)) | |
| 3 | 2 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝑤 ↔ 𝜑) → ∀𝑥(𝜑 → 𝑥 ∈ 𝑤)) |
| 4 | 3 | eximi 1835 | . 2 ⊢ (∃𝑤∀𝑥(𝑥 ∈ 𝑤 ↔ 𝜑) → ∃𝑤∀𝑥(𝜑 → 𝑥 ∈ 𝑤)) |
| 5 | sepexlem 5297 | . 2 ⊢ (∃𝑤∀𝑥(𝜑 → 𝑥 ∈ 𝑤) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) | |
| 6 | 1, 4, 5 | 3syl 18 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-sep 5294 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sepexi 5299 |
| Copyright terms: Public domain | W3C validator |