![]() |
Metamath
Proof Explorer Theorem List (p. 53 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30435) |
![]() (30436-31958) |
![]() (31959-47941) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | brin 5201 | The intersection of two relations. (Contributed by FL, 7-Oct-2008.) |
⊢ (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐵)) | ||
Theorem | brdif 5202 | The difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2011.) |
⊢ (𝐴(𝑅 ∖ 𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ ¬ 𝐴𝑆𝐵)) | ||
Theorem | sbcbr123 5203 | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) (Revised by NM, 22-Aug-2018.) |
⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵⦋𝐴 / 𝑥⦌𝑅⦋𝐴 / 𝑥⦌𝐶) | ||
Theorem | sbcbr 5204* | Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018.) |
⊢ ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵⦋𝐴 / 𝑥⦌𝑅𝐶) | ||
Theorem | sbcbr12g 5205* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | sbcbr1g 5206* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵𝑅𝐶)) | ||
Theorem | sbcbr2g 5207* | Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005.) |
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵𝑅𝐶 ↔ 𝐵𝑅⦋𝐴 / 𝑥⦌𝐶)) | ||
Theorem | brsymdif 5208 | Characterization of the symmetric difference of two binary relations. (Contributed by Scott Fenton, 11-Apr-2012.) |
⊢ (𝐴(𝑅 △ 𝑆)𝐵 ↔ ¬ (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) | ||
Theorem | brralrspcev 5209* | Restricted existential specialization with a restricted universal quantifier over a relation, closed form. (Contributed by AV, 20-Aug-2022.) |
⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 𝐴𝑅𝐵) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 𝐴𝑅𝑥) | ||
Theorem | brimralrspcev 5210* | Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022.) |
⊢ ((𝐵 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝐵) → 𝜓)) → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝜑 ∧ 𝐴𝑅𝑥) → 𝜓)) | ||
Syntax | copab 5211 | Extend class notation to include ordered-pair class abstraction (class builder). |
class {⟨𝑥, 𝑦⟩ ∣ 𝜑} | ||
Definition | df-opab 5212* | Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5577 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8041. An example is given by ex-opab 29949. (Contributed by NM, 4-Jul-1994.) |
⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | ||
Theorem | opabss 5213* | The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ⊆ 𝑅 | ||
Theorem | opabbid 5214 | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒}) | ||
Theorem | opabbidv 5215* | Equivalent wff's yield equal ordered-pair class abstractions (deduction form). (Contributed by NM, 15-May-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {⟨𝑥, 𝑦⟩ ∣ 𝜒}) | ||
Theorem | opabbii 5216 | Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ 𝜓} | ||
Theorem | nfopabd 5217* | Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑧𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜓}) | ||
Theorem | nfopab 5218* | Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑} | ||
Theorem | nfopab1 5219 | The first abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} | ||
Theorem | nfopab2 5220 | The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} | ||
Theorem | cbvopab 5221* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 14-Sep-2003.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑤𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑦𝜓 & ⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} | ||
Theorem | cbvopabv 5222* | Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996.) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} | ||
Theorem | cbvopabvOLD 5223* | Obsolete version of cbvopabv 5222 as of 15-Oct-2024. (Contributed by NM, 15-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑤⟩ ∣ 𝜓} | ||
Theorem | cbvopab1 5224* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2370. See cbvopab1g 5225 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓} | ||
Theorem | cbvopab1g 5225* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvopab1 5224 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by NM, 6-Oct-2004.) (Revised by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓} | ||
Theorem | cbvopab2 5226* | Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013.) |
⊢ Ⅎ𝑧𝜑 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓} | ||
Theorem | cbvopab1s 5227* | Change first bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 31-Jul-2003.) |
⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ [𝑧 / 𝑥]𝜑} | ||
Theorem | cbvopab1v 5228* | Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) Reduce axiom usage. (Revised by Gino Giotto, 17-Nov-2024.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓} | ||
Theorem | cbvopab1vOLD 5229* | Obsolete version of cbvopab1v 5228 as of 17-Nov-2024. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜓} | ||
Theorem | cbvopab2v 5230* | Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999.) |
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑥, 𝑧⟩ ∣ 𝜓} | ||
Theorem | unopab 5231 | Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∪ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∨ 𝜓)} | ||
Syntax | cmpt 5232 | Extend the definition of a class to include maps-to notation for defining a function via a rule. |
class (𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Definition | df-mpt 5233* | Define maps-to notation for defining a function via a rule. Read as "the function which maps 𝑥 (in 𝐴) to 𝐵(𝑥)". The class expression 𝐵 is the value of the function at 𝑥 and normally contains the variable 𝑥. An example is the square function for complex numbers, (𝑥 ∈ ℂ ↦ (𝑥↑2)). Similar to the definition of mapping in [ChoquetDD] p. 2. (Contributed by NM, 17-Feb-2008.) |
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | ||
Theorem | mpteq12da 5234 | An equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) Remove dependency on ax-10 2136. (Revised by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq12df 5235 | An equality inference for the maps-to notation. Compare mpteq12dv 5240. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq12dfOLD 5236 | Obsolete version of mpteq12df 5235 as of 11-Nov-2024. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq12f 5237 | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq12dva 5238* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2136, ax-12 2170. (Revised by SN, 11-Nov-2024.) |
⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq12dvaOLD 5239* | Obsolete version of mpteq12dva 5238 as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq12dv 5240* | An equality inference for the maps-to notation. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 16-Dec-2013.) Remove dependency on ax-10 2136, ax-12 2170. (Revised by SN and Gino Giotto, 1-Dec-2023.) |
⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq12 5241* | An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | mpteq1 5242* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | mpteq1OLD 5243* | Obsolete version of mpteq1 5242 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | mpteq1d 5244* | An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 11-Jun-2016.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | ||
Theorem | mpteq1i 5245 | An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | ||
Theorem | mpteq1iOLD 5246* | An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | ||
Theorem | mpteq2da 5247 | Slightly more general equality inference for the maps-to notation. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
Theorem | mpteq2daOLD 5248 | Obsolete version of mpteq2da 5247 as of 11-Nov-2024. (Contributed by FL, 14-Sep-2013.) (Revised by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
Theorem | mpteq2dva 5249* | Slightly more general equality inference for the maps-to notation. (Contributed by Scott Fenton, 25-Apr-2012.) Remove dependency on ax-10 2136. (Revised by SN, 11-Nov-2024.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
Theorem | mpteq2dvaOLD 5250* | Obsolete version of mpteq2dva 5249 as of 11-Nov-2024. (Contributed by Scott Fenton, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
Theorem | mpteq2dv 5251* | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 23-Aug-2014.) |
⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | ||
Theorem | mpteq2ia 5252 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | mpteq2iaOLD 5253 | Obsolete version of mpteq2ia 5252 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | mpteq2i 5254 | An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
⊢ 𝐵 = 𝐶 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | mpteq12i 5255 | An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
⊢ 𝐴 = 𝐶 & ⊢ 𝐵 = 𝐷 ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) | ||
Theorem | nfmpt 5256* | Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | nfmpt1 5257 | Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | ||
Theorem | cbvmptf 5258* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) Add disjoint variable condition to avoid ax-13 2370. See cbvmptfg 5259 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | cbvmptfg 5259 | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvmptf 5258 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by NM, 11-Sep-2011.) (Revised by Thierry Arnoux, 9-Mar-2017.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | cbvmpt 5260* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) Add disjoint variable condition to avoid ax-13 2370. See cbvmptg 5261 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | cbvmptg 5261* | Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvmpt 5260 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by NM, 11-Sep-2011.) (New usage is discouraged.) |
⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | cbvmptv 5262* | Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid auxiliary axioms . See cbvmptvg 5264 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Nov-2024.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | cbvmptvOLD 5263* | Obsolete version of cbvmptv 5262 as of 17-Nov-2024. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid ax-13 2370. See cbvmptvg 5264 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | cbvmptvg 5264* | Rule to change the bound variable in a maps-to function, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbvmptv 5262 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by Mario Carneiro, 19-Feb-2013.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) | ||
Theorem | mptv 5265* | Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
⊢ (𝑥 ∈ V ↦ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝐵} | ||
Syntax | wtr 5266 | Extend wff notation to include transitive classes. Notation from [TakeutiZaring] p. 35. |
wff Tr 𝐴 | ||
Definition | df-tr 5267 | Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6112). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5268 (which is suggestive of the word "transitive"), dftr2c 5269, dftr3 5272, dftr4 5273, dftr5 5270, and (when 𝐴 is a set) unisuc 6444. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | ||
Theorem | dftr2 5268* | An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5269 instead may avoid dependences on ax-11 2153. (Contributed by NM, 24-Apr-1994.) |
⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | ||
Theorem | dftr2c 5269* | Variant of dftr2 5268 with commuted quantifiers, useful for shortening proofs and avoiding ax-11 2153. (Contributed by BTernaryTau, 28-Dec-2024.) |
⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | ||
Theorem | dftr5 5270* | An alternate way of defining a transitive class. Definition 1.1 of [Schloeder] p. 1. (Contributed by NM, 20-Mar-2004.) Avoid ax-11 2153. (Revised by BTernaryTau, 28-Dec-2024.) |
⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | ||
Theorem | dftr5OLD 5271* | Obsolete version of dftr5 5270 as of 28-Dec-2024. (Contributed by NM, 20-Mar-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | ||
Theorem | dftr3 5272* | An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.) |
⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | ||
Theorem | dftr4 5273 | An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | ||
Theorem | treq 5274 | Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | ||
Theorem | trel 5275 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | ||
Theorem | trel3 5276 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) |
⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | ||
Theorem | trss 5277 | An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
Theorem | trin 5278 | The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | ||
Theorem | tr0 5279 | The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
⊢ Tr ∅ | ||
Theorem | trv 5280 | The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
⊢ Tr V | ||
Theorem | triun 5281 | An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | truni 5282* | The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) | ||
Theorem | triin 5283 | An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | trint 5284* | The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by BJ, 3-Oct-2022.) |
⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) | ||
Theorem | trintss 5285 | Any nonempty transitive class includes its intersection. Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011.) (Proof shortened by Andrew Salmon, 14-Nov-2011.) |
⊢ ((Tr 𝐴 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝐴) | ||
Axiom | ax-rep 5286* |
Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory.
Axiom 5 of [TakeutiZaring] p. 19.
It tells us that the image of any set
under a function is also a set (see the variant funimaex 6637). Although
𝜑 may be any wff whatsoever, this
axiom is useful (i.e. its
antecedent is satisfied) when we are given some function and 𝜑
encodes the predicate "the value of the function at 𝑤 is
𝑧".
Thus, 𝜑 will ordinarily have free variables
𝑤
and 𝑧- think
of it informally as 𝜑(𝑤, 𝑧). We prefix 𝜑 with the
quantifier ∀𝑦 in order to "protect" the
axiom from any 𝜑
containing 𝑦, thus allowing us to eliminate any
restrictions on
𝜑. Another common variant is derived
as axrep5 5292, where you can
find some further remarks. A slightly more compact version is shown as
axrep2 5289. A quite different variant is zfrep6 7944, which if used in
place of ax-rep 5286 would also require that the Separation Scheme
axsep 5299
be stated as a separate axiom.
There is a very strong generalization of Replacement that doesn't demand function-like behavior of 𝜑. Two versions of this generalization are called the Collection Principle cp 9889 and the Boundedness Axiom bnd 9890. Many developments of set theory distinguish the uses of Replacement from uses of the weaker axioms of Separation axsep 5299, Null Set axnul 5306, and Pairing axpr 5427, all of which we derive from Replacement. In order to make it easier to identify the uses of those redundant axioms, we restate them as Axioms ax-sep 5300, ax-nul 5307, and ax-pr 5428 below the theorems that prove them. (Contributed by NM, 23-Dec-1993.) |
⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
Theorem | axrep1 5287* | The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html. Equivalence is shown via the path ax-rep 5286 → axrep1 5287 → axrep2 5289 → axrepnd 10592 → zfcndrep 10612 = ax-rep 5286. (Contributed by NM, 19-Nov-2005.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-13 2370. (Revised by BJ, 31-May-2019.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ 𝜑))) | ||
Theorem | axreplem 5288* | Lemma for axrep2 5289 and axrep3 5290. (Contributed by BJ, 6-Aug-2022.) |
⊢ (𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) | ||
Theorem | axrep2 5289* | Axiom of Replacement expressed with the fewest number of different variables and without any restrictions on 𝜑. (Contributed by NM, 15-Aug-2003.) Remove dependency on ax-13 2370. (Revised by BJ, 31-May-2019.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | ||
Theorem | axrep3 5290* | Axiom of Replacement slightly strengthened from axrep2 5289; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.) Remove dependency on ax-13 2370. (Revised by BJ, 31-May-2019.) |
⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) | ||
Theorem | axrep4 5291* | A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
Theorem | axrep5 5292* | Axiom of Replacement (similar to Axiom Rep of [BellMachover] p. 463). The antecedent tells us 𝜑 is analogous to a "function" from 𝑥 to 𝑦 (although it is not really a function since it is a wff and not a class). In the consequent we postulate the existence of a set 𝑧 that corresponds to the "image" of 𝜑 restricted to some other set 𝑤. The hypothesis says 𝑧 must not be free in 𝜑. (Contributed by NM, 26-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥(𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
Theorem | axrep6 5293* | A condensed form of ax-rep 5286. (Contributed by SN, 18-Sep-2023.) |
⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) | ||
Theorem | axrep6g 5294* | axrep6 5293 in class notation. It is equivalent to both ax-rep 5286 and abrexexg 7950, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) | ||
Theorem | zfrepclf 5295* | An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
⊢ Ⅎ𝑥𝐴 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ⇒ ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | zfrep3cl 5296* | An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ⇒ ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
Theorem | zfrep4 5297* | A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995.) |
⊢ {𝑥 ∣ 𝜑} ∈ V & ⊢ (𝜑 → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝜑 ∧ 𝜓)} ∈ V | ||
Theorem | axsepgfromrep 5298* | A more general version axsepg 5301 of the axiom scheme of separation ax-sep 5300 derived from the axiom scheme of replacement ax-rep 5286 (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on 𝑧, 𝜑 (that is, variable 𝑧 may occur in formula 𝜑). See linked statements for more information. (Contributed by NM, 11-Sep-2006.) Remove dependencies on ax-9 2115 to ax-13 2370. (Revised by SN, 25-Sep-2023.) Use ax-sep 5300 instead (or axsepg 5301 if the extra generality is needed). (New usage is discouraged.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Theorem | axsep 5299* | Axiom scheme of separation ax-sep 5300 derived from the axiom scheme of replacement ax-rep 5286. The statement is identical to that of ax-sep 5300, and therefore shows that ax-sep 5300 is redundant when ax-rep 5286 is allowed. See ax-sep 5300 for more information. (Contributed by NM, 11-Sep-2006.) Use ax-sep 5300 instead. (New usage is discouraged.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
Axiom | ax-sep 5300* |
Axiom scheme of separation. This is an axiom scheme of Zermelo and
Zermelo-Fraenkel set theories.
It was derived as axsep 5299 above and is therefore redundant in ZF set theory, which contains ax-rep 5286 as an axiom (contrary to Zermelo set theory). We state it as a separate axiom here so that some of its uses can be identified more easily. Some textbooks present the axiom scheme of separation as a separate axiom scheme in order to show that much of set theory can be derived without the stronger axiom scheme of replacement (which is not part of Zermelo set theory). The axiom scheme of separation is a weak form of Frege's axiom scheme of (unrestricted) comprehension, in that it conditions it with the condition 𝑥 ∈ 𝑧, so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 3777. In some texts, this scheme is called "Aussonderung" (German for "separation") or "Subset Axiom". The variable 𝑥 can occur in the formula 𝜑, which in textbooks is often written 𝜑(𝑥). To specify this in the Metamath language, we omit the distinct variable condition ($d) that 𝑥 not occur in 𝜑. For a version using a class variable, see zfauscl 5302, which requires the axiom of extensionality as well as the axiom scheme of separation for its derivation. If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5362 shows (showing the necessity of that condition in zfauscl 5302). Scheme Sep of [BellMachover] p. 463. (Contributed by NM, 11-Sep-2006.) |
⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |