| Metamath
Proof Explorer Theorem List (p. 53 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-tr 5201 | Define the transitive class predicate. Not to be confused with a transitive relation (see cotr 6063). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 5202 (which is suggestive of the word "transitive"), dftr2c 5203, dftr3 5205, dftr4 5206, dftr5 5204, and (when 𝐴 is a set) unisuc 6392. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
| ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | ||
| Theorem | dftr2 5202* | An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5203 instead may avoid dependences on ax-11 2162. (Contributed by NM, 24-Apr-1994.) |
| ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | ||
| Theorem | dftr2c 5203* | Variant of dftr2 5202 with commuted quantifiers, useful for shortening proofs and avoiding ax-11 2162. (Contributed by BTernaryTau, 28-Dec-2024.) |
| ⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | ||
| Theorem | dftr5 5204* | An alternate way of defining a transitive class. Definition 1.1 of [Schloeder] p. 1. (Contributed by NM, 20-Mar-2004.) Avoid ax-11 2162. (Revised by BTernaryTau, 28-Dec-2024.) |
| ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | ||
| Theorem | dftr3 5205* | An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.) |
| ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) | ||
| Theorem | dftr4 5206 | An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
| ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | ||
| Theorem | treq 5207 | Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
| ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) | ||
| Theorem | trel 5208 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | ||
| Theorem | trel3 5209 | In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) |
| ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷 ∧ 𝐷 ∈ 𝐴) → 𝐵 ∈ 𝐴)) | ||
| Theorem | trss 5210 | An element of a transitive class is a subset of the class. (Contributed by NM, 7-Aug-1994.) (Proof shortened by JJ, 26-Jul-2021.) |
| ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
| Theorem | trin 5211 | The intersection of transitive classes is transitive. (Contributed by NM, 9-May-1994.) |
| ⊢ ((Tr 𝐴 ∧ Tr 𝐵) → Tr (𝐴 ∩ 𝐵)) | ||
| Theorem | tr0 5212 | The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
| ⊢ Tr ∅ | ||
| Theorem | trv 5213 | The universe is transitive. (Contributed by NM, 14-Sep-2003.) |
| ⊢ Tr V | ||
| Theorem | triun 5214 | An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | truni 5215* | The union of a class of transitive sets is transitive. Exercise 5(a) of [Enderton] p. 73. (Contributed by Scott Fenton, 21-Feb-2011.) (Proof shortened by Mario Carneiro, 26-Apr-2014.) |
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∪ 𝐴) | ||
| Theorem | triin 5216 | An indexed intersection of a class of transitive sets is transitive. (Contributed by BJ, 3-Oct-2022.) |
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∩ 𝑥 ∈ 𝐴 𝐵) | ||
| Theorem | trint 5217* | The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by BJ, 3-Oct-2022.) |
| ⊢ (∀𝑥 ∈ 𝐴 Tr 𝑥 → Tr ∩ 𝐴) | ||
| Theorem | trintss 5218 | Any nonempty transitive class includes its intersection. Exercise 3 in [TakeutiZaring] p. 44 (which mistakenly does not include the nonemptiness hypothesis). (Contributed by Scott Fenton, 3-Mar-2011.) (Proof shortened by Andrew Salmon, 14-Nov-2011.) |
| ⊢ ((Tr 𝐴 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ⊆ 𝐴) | ||
| Axiom | ax-rep 5219* |
Axiom of Replacement. An axiom scheme of Zermelo-Fraenkel set theory.
Axiom 5 of [TakeutiZaring] p. 19.
It tells us that the image of any set
under a function is also a set (see the variant funimaex 6574). Although
𝜑 may be any wff whatsoever, this
axiom is useful (i.e. its
antecedent is satisfied) when we are given some function and 𝜑
encodes the predicate "the value of the function at 𝑤 is
𝑧".
Thus, 𝜑 will ordinarily have free variables
𝑤
and 𝑧- think
of it informally as 𝜑(𝑤, 𝑧). We prefix 𝜑 with the
quantifier ∀𝑦 in order to "protect" the
axiom from any 𝜑
containing 𝑦, thus allowing us to eliminate any
restrictions on
𝜑. Another common variant is derived
as axrep5 5227, where you can
find some further remarks. A slightly more compact version is shown as
axrep2 5222. A quite different variant is zfrep6 7893, which if used in
place of ax-rep 5219 would also require that the Separation Scheme
axsep 5235
be stated as a separate axiom.
There is a very strong generalization of Replacement that doesn't demand function-like behavior of 𝜑. Two versions of this generalization are called the Collection Principle cp 9791 and the Boundedness Axiom bnd 9792. Many developments of set theory distinguish the uses of Replacement from uses of the weaker axioms of Separation axsep 5235, Null Set axnul 5245, and Pairing axpr 5367, all of which we derive from Replacement. In order to make it easier to identify the uses of those redundant axioms, we restate them as Axioms ax-sep 5236, ax-nul 5246, and ax-pr 5372 below the theorems that prove them. (Contributed by NM, 23-Dec-1993.) |
| ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
| Theorem | axrep1 5220* | The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html. Equivalence is shown via the path ax-rep 5219 → axrep1 5220 → axrep2 5222 → axrepnd 10492 → zfcndrep 10512 = ax-rep 5219. (Contributed by NM, 19-Nov-2005.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-13 2374. (Revised by BJ, 31-May-2019.) |
| ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ 𝜑))) | ||
| Theorem | axreplem 5221* | Lemma for axrep2 5222 and axrep3 5223. (Contributed by BJ, 6-Aug-2022.) |
| ⊢ (𝑥 = 𝑦 → (∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑥 ∧ 𝜒))) ↔ ∃𝑢(𝜑 → ∀𝑣(𝜓 ↔ ∃𝑤(𝑧 ∈ 𝑦 ∧ 𝜒))))) | ||
| Theorem | axrep2 5222* | Axiom of Replacement expressed with the fewest number of different variables and without any restrictions on 𝜑. (Contributed by NM, 15-Aug-2003.) Remove dependency on ax-13 2374. (Revised by BJ, 31-May-2019.) |
| ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | ||
| Theorem | axrep3 5223* | Axiom of Replacement slightly strengthened from axrep2 5222; 𝑤 may occur free in 𝜑. (Contributed by NM, 2-Jan-1997.) Remove dependency on ax-13 2374. (Revised by BJ, 31-May-2019.) |
| ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ ∀𝑦𝜑))) | ||
| Theorem | axrep4v 5224* | Version of axrep4 5225 with a disjoint variable condition, requiring fewer axioms. (Contributed by Matthew House, 18-Sep-2025.) |
| ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
| Theorem | axrep4 5225* | A more traditional version of the Axiom of Replacement. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Matthew House, 18-Sep-2025.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
| Theorem | axrep4OLD 5226* | Obsolete version of axrep4 5225 as of 18-Sep-2025. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
| Theorem | axrep5 5227* | Axiom of Replacement (similar to Axiom Rep of [BellMachover] p. 463). The antecedent tells us 𝜑 is analogous to a "function" from 𝑥 to 𝑦 (although it is not really a function since it is a wff and not a class). In the consequent we postulate the existence of a set 𝑧 that corresponds to the "image" of 𝜑 restricted to some other set 𝑤. The hypothesis says 𝑧 must not be free in 𝜑. (Contributed by NM, 26-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| ⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑥(𝑥 ∈ 𝑤 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝑤 ∧ 𝜑))) | ||
| Theorem | axrep6 5228* | A condensed form of ax-rep 5219. (Contributed by SN, 18-Sep-2023.) (Proof shortened by Matthew House, 18-Sep-2025.) |
| ⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) | ||
| Theorem | axrep6OLD 5229* | Obsolete version of axrep6 5228 as of 18-Sep-2025. (Contributed by SN, 18-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑤∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) | ||
| Theorem | axrep6g 5230* | axrep6 5228 in class notation. It is equivalent to both ax-rep 5219 and abrexexg 7899, providing a direct link between the two. (Contributed by SN, 11-Dec-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦𝜓) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜓} ∈ V) | ||
| Theorem | zfrepclf 5231* | An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ⇒ ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | zfrep3cl 5232* | An inference based on the Axiom of Replacement. Typically, 𝜑 defines a function from 𝑥 to 𝑦. (Contributed by NM, 26-Nov-1995.) |
| ⊢ 𝐴 ∈ V & ⊢ (𝑥 ∈ 𝐴 → ∃𝑧∀𝑦(𝜑 → 𝑦 = 𝑧)) ⇒ ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | zfrep4 5233* | A version of Replacement using class abstractions. (Contributed by NM, 26-Nov-1995.) |
| ⊢ {𝑥 ∣ 𝜑} ∈ V & ⊢ (𝜑 → ∃𝑧∀𝑦(𝜓 → 𝑦 = 𝑧)) ⇒ ⊢ {𝑦 ∣ ∃𝑥(𝜑 ∧ 𝜓)} ∈ V | ||
| Theorem | axsepgfromrep 5234* | A more general version axsepg 5237 of the axiom scheme of separation ax-sep 5236 derived from the axiom scheme of replacement ax-rep 5219 (and first-order logic). The extra generality consists in the absence of a disjoint variable condition on 𝑧, 𝜑 (that is, variable 𝑧 may occur in formula 𝜑). See linked statements for more information. (Contributed by NM, 11-Sep-2006.) Remove dependencies on ax-9 2123 to ax-13 2374. (Revised by SN, 25-Sep-2023.) Use ax-sep 5236 instead (or axsepg 5237 if the extra generality is needed). (New usage is discouraged.) |
| ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
| Theorem | axsep 5235* | Axiom scheme of separation ax-sep 5236 derived from the axiom scheme of replacement ax-rep 5219. The statement is identical to that of ax-sep 5236, and therefore shows that ax-sep 5236 is redundant when ax-rep 5219 is allowed. See ax-sep 5236 for more information. (Contributed by NM, 11-Sep-2006.) Use ax-sep 5236 instead. (New usage is discouraged.) |
| ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
| Axiom | ax-sep 5236* |
Axiom scheme of separation. This is an axiom scheme of Zermelo and
Zermelo-Fraenkel set theories.
It was derived as axsep 5235 above and is therefore redundant in ZF set theory, which contains ax-rep 5219 as an axiom (contrary to Zermelo set theory). We state it as a separate axiom here so that some of its uses can be identified more easily. Some textbooks present the axiom scheme of separation as a separate axiom scheme in order to show that much of set theory can be derived without the stronger axiom scheme of replacement (which is not part of Zermelo set theory). The axiom scheme of separation is a weak form of Frege's axiom scheme of (unrestricted) comprehension, in that it conditions it with the condition 𝑥 ∈ 𝑧, so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 3735. In some texts, this scheme is called "Aussonderung" (German for "separation") or "Subset Axiom". The variable 𝑥 can occur in the formula 𝜑, which in textbooks is often written 𝜑(𝑥). To specify this in the Metamath language, we omit the distinct variable condition ($d) that 𝑥 not occur in 𝜑. For a version using a class variable, see zfauscl 5238, which requires the axiom of extensionality as well as the axiom scheme of separation for its derivation. If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5303 shows (showing the necessity of that condition in zfauscl 5238). Scheme Sep of [BellMachover] p. 463. (Contributed by NM, 11-Sep-2006.) |
| ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
| Theorem | axsepg 5237* | A more general version of the axiom scheme of separation ax-sep 5236, where variable 𝑧 can also occur (in addition to 𝑥) in formula 𝜑, which can therefore be thought of as 𝜑(𝑥, 𝑧). This version is derived from the more restrictive ax-sep 5236 with no additional set theory axioms. Note that it was also derived from ax-rep 5219 but without ax-sep 5236 as axsepgfromrep 5234. (Contributed by NM, 10-Dec-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) Remove dependency on ax-12 2182 and ax-13 2374 and shorten proof. (Revised by BJ, 6-Oct-2019.) |
| ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) | ||
| Theorem | zfauscl 5238* |
Separation Scheme (Aussonderung) using a class variable. To derive this
from ax-sep 5236, we invoke the Axiom of Extensionality
(indirectly via
vtocl 3512), which is needed for the justification of
class variable
notation.
If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5303 shows. (Contributed by NM, 21-Jun-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | sepexlem 5239* | Lemma for sepex 5240. Use sepex 5240 instead. (Contributed by Matthew House, 19-Sep-2025.) (New usage is discouraged.) |
| ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) | ||
| Theorem | sepex 5240* | Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep 5236. Similar to Theorem 1.3(ii) of [BellMachover] p. 463. (Contributed by Matthew House, 19-Sep-2025.) |
| ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) | ||
| Theorem | sepexi 5241* | Convert implication to equivalence within an existence statement using the Separation Scheme (Aussonderung) ax-sep 5236. Inference associated with sepex 5240. (Contributed by NM, 21-Jun-1993.) Generalize conclusion, extract closed form, and avoid ax-9 2123. (Revised by Matthew House, 19-Sep-2025.) |
| ⊢ ∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) ⇒ ⊢ ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑) | ||
| Theorem | bm1.3iiOLD 5242* | Obsolete version of sepexi 5241 as of 18-Sep-2025. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦(𝜑 → 𝑦 ∈ 𝑥) ⇒ ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
| Theorem | ax6vsep 5243* | Derive ax6v 1969 (a weakened version of ax-6 1968 where 𝑥 and 𝑦 must be distinct), from Separation ax-sep 5236 and Extensionality ax-ext 2705. See ax6 2386 for the derivation of ax-6 1968 from ax6v 1969. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
| Theorem | axnulALT 5244* | Alternate proof of axnul 5245, proved from propositional calculus, ax-gen 1796, ax-4 1810, sp 2188, and ax-rep 5219. To check this, replace sp 2188 with the obsolete axiom ax-c5 39002 in the proof of axnulALT 5244 and type the Metamath program "MM> SHOW TRACE_BACK axnulALT / AXIOMS" command. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | axnul 5245* |
The Null Set Axiom of ZF set theory: there exists a set with no
elements. Axiom of Empty Set of [Enderton] p. 18. In some textbooks,
this is presented as a separate axiom; here we show it can be derived
from Separation ax-sep 5236. This version of the Null Set Axiom tells us
that at least one empty set exists, but does not tell us that it is
unique - we need the Axiom of Extensionality to do that (see nulmo 2710).
This proof, suggested by Jeff Hoffman, uses only ax-4 1810 and ax-gen 1796 from predicate calculus, which are valid in "free logic" i.e. logic holding in an empty domain (see Axiom A5 and Rule R2 of [LeBlanc] p. 277). Thus, our ax-sep 5236 implies the existence of at least one set. Note that Kunen's version of ax-sep 5236 (Axiom 3 of [Kunen] p. 11) does not imply the existence of a set because his is universally closed, i.e., prefixed with universal quantifiers to eliminate all free variables. His existence is provided by a separate axiom stating ∃𝑥𝑥 = 𝑥 (Axiom 0 of [Kunen] p. 10). See axnulALT 5244 for a proof directly from ax-rep 5219. This theorem should not be referenced by any proof. Instead, use ax-nul 5246 below so that the uses of the Null Set Axiom can be more easily identified. (Contributed by Jeff Hoffman, 3-Feb-2008.) (Revised by NM, 4-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Axiom | ax-nul 5246* | The Null Set Axiom of ZF set theory. It was derived as axnul 5245 above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 7-Aug-2003.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | 0ex 5247 | The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of [TakeutiZaring] p. 20. For the unabbreviated version, see ax-nul 5246. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| ⊢ ∅ ∈ V | ||
| Theorem | al0ssb 5248* | The empty set is the unique class which is a subclass of any set. (Contributed by AV, 24-Aug-2022.) |
| ⊢ (∀𝑦 𝑋 ⊆ 𝑦 ↔ 𝑋 = ∅) | ||
| Theorem | sseliALT 5249 | Alternate proof of sseli 3926 illustrating the use of the weak deduction theorem to prove it from the inference sselii 3927. (Contributed by NM, 24-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵) | ||
| Theorem | csbexg 5250 | The existence of proper substitution into a class. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 17-Aug-2018.) |
| ⊢ (∀𝑥 𝐵 ∈ 𝑊 → ⦋𝐴 / 𝑥⦌𝐵 ∈ V) | ||
| Theorem | csbex 5251 | The existence of proper substitution into a class. (Contributed by NM, 7-Aug-2007.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Revised by NM, 17-Aug-2018.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 ∈ V | ||
| Theorem | unisn2 5252 | A version of unisn 4877 without the 𝐴 ∈ V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006.) |
| ⊢ ∪ {𝐴} ∈ {∅, 𝐴} | ||
| Theorem | nalset 5253* | No set contains all sets. Theorem 41 of [Suppes] p. 30. (Contributed by NM, 23-Aug-1993.) Remove use of ax-12 2182 and ax-13 2374. (Revised by BJ, 31-May-2019.) |
| ⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | ||
| Theorem | vnex 5254 | The universal class does not exist as a set. (Contributed by NM, 4-Jul-2005.) |
| ⊢ ¬ ∃𝑥 𝑥 = V | ||
| Theorem | vprc 5255 | The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.) |
| ⊢ ¬ V ∈ V | ||
| Theorem | nvel 5256 | The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
| ⊢ ¬ V ∈ 𝐴 | ||
| Theorem | inex1 5257 | Separation Scheme (Aussonderung) using class notation. Compare Exercise 4 of [TakeutiZaring] p. 22. (Contributed by NM, 21-Jun-1993.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ V | ||
| Theorem | inex2 5258 | Separation Scheme (Aussonderung) using class notation. (Contributed by NM, 27-Apr-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∩ 𝐴) ∈ V | ||
| Theorem | inex1g 5259 | Closed-form, generalized Separation Scheme. (Contributed by NM, 7-Apr-1995.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | ||
| Theorem | inex2g 5260 | Sufficient condition for an intersection to be a set. Commuted form of inex1g 5259. (Contributed by Peter Mazsa, 19-Dec-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∩ 𝐴) ∈ V) | ||
| Theorem | ssex 5261 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5236 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | ||
| Theorem | ssexi 5262 | The subset of a set is also a set. (Contributed by NM, 9-Sep-1993.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | ssexg 5263 | The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
| Theorem | ssexd 5264 | A subclass of a set is a set. Deduction form of ssexg 5263. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
| Theorem | abexd 5265* | Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ∈ V) | ||
| Theorem | abex 5266* | Conditions for a class abstraction to be a set. Remark: This proof is shorter than a proof using abexd 5265. (Contributed by AV, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∣ 𝜑} ∈ V | ||
| Theorem | prcssprc 5267 | The superclass of a proper class is a proper class. (Contributed by AV, 27-Dec-2020.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∉ V) → 𝐵 ∉ V) | ||
| Theorem | sselpwd 5268 | Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | ||
| Theorem | difexg 5269 | Existence of a difference. (Contributed by NM, 26-May-1998.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ V) | ||
| Theorem | difexi 5270 | Existence of a difference, inference version of difexg 5269. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∖ 𝐵) ∈ V | ||
| Theorem | difexd 5271 | Existence of a difference. (Contributed by SN, 16-Jul-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) | ||
| Theorem | zfausab 5272* | Separation Scheme (Aussonderung) in terms of a class abstraction. (Contributed by NM, 8-Jun-1994.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V | ||
| Theorem | elpw2g 5273 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
| Theorem | elpw2 5274 | Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | elpwi2 5275 | Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) (Proof shortened by Wolf Lammen, 26-May-2024.) |
| ⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ 𝒫 𝐵 | ||
| Theorem | rabelpw 5276* | A restricted class abstraction is an element of the power set of its restricting set. (Contributed by AV, 9-Oct-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ 𝒫 𝐴) | ||
| Theorem | rabexg 5277* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 23-Oct-1999.) (Proof shortened by BJ, 24-Jul-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | rabexgOLD 5278* | Obsolete version of rabexg 5277 as of 24-Jul-2025). (Contributed by NM, 23-Oct-1999.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | rabex 5279* | Separation Scheme in terms of a restricted class abstraction. (Contributed by NM, 19-Jul-1996.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V | ||
| Theorem | rabexd 5280* | Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 5281. (Contributed by AV, 16-Jul-2019.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 ∈ V) | ||
| Theorem | rabex2 5281* | Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ 𝐵 ∈ V | ||
| Theorem | rab2ex 5282* | A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} & ⊢ 𝐴 ∈ V ⇒ ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V | ||
| Theorem | elssabg 5283* | Membership in a class abstraction involving a subset. Unlike elabg 3628, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) | ||
| Theorem | intex 5284 | The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
| ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | ||
| Theorem | intnex 5285 | If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
| ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) | ||
| Theorem | intexab 5286 | The intersection of a nonempty class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | ||
| Theorem | intexrab 5287 | The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.) |
| ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∩ {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
| Theorem | iinexg 5288* | The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.) |
| ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) | ||
| Theorem | intabs 5289* | Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = ∩ {𝑦 ∣ 𝜓} → (𝜑 ↔ 𝜒)) & ⊢ (∩ {𝑦 ∣ 𝜓} ⊆ 𝐴 ∧ 𝜒) ⇒ ⊢ ∩ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} = ∩ {𝑥 ∣ 𝜑} | ||
| Theorem | inuni 5290* | The intersection of a union ∪ 𝐴 with a class 𝐵 is equal to the union of the intersections of each element of 𝐴 with 𝐵. (Contributed by FL, 24-Mar-2007.) (Proof shortened by Wolf Lammen, 15-May-2025.) |
| ⊢ (∪ 𝐴 ∩ 𝐵) = ∪ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = (𝑦 ∩ 𝐵)} | ||
| Theorem | axpweq 5291* | Two equivalent ways to express the Power Set Axiom. Note that ax-pow 5305 is not used by the proof. When ax-pow 5305 is assumed and 𝐴 is a set, both sides of the biconditional hold. In ZF, both sides hold if and only if 𝐴 is a set (see pwexr 7704). (Contributed by NM, 22-Jun-2009.) |
| ⊢ (𝒫 𝐴 ∈ V ↔ ∃𝑥∀𝑦(∀𝑧(𝑧 ∈ 𝑦 → 𝑧 ∈ 𝐴) → 𝑦 ∈ 𝑥)) | ||
| Theorem | pwnss 5292 | The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Proof shortened by BJ, 24-Jul-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ¬ 𝒫 𝐴 ⊆ 𝐴) | ||
| Theorem | pwne 5293 | No set equals its power set. The sethood antecedent is necessary; compare pwv 4855. (Contributed by NM, 17-Nov-2008.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ≠ 𝐴) | ||
| Theorem | difelpw 5294 | A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∖ 𝐵) ∈ 𝒫 𝐴) | ||
| Theorem | class2set 5295* | The class of elements of 𝐴 "such that 𝐴 is a set" is a set. That class is equal to 𝐴 when 𝐴 is a set (see class2seteq 3659) and to the empty set when 𝐴 is a proper class. (Contributed by NM, 16-Oct-2003.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V | ||
| Theorem | 0elpw 5296 | Every power class contains the empty set. (Contributed by NM, 25-Oct-2007.) |
| ⊢ ∅ ∈ 𝒫 𝐴 | ||
| Theorem | pwne0 5297 | A power class is never empty. (Contributed by NM, 3-Sep-2018.) |
| ⊢ 𝒫 𝐴 ≠ ∅ | ||
| Theorem | 0nep0 5298 | The empty set and its power set are not equal. (Contributed by NM, 23-Dec-1993.) |
| ⊢ ∅ ≠ {∅} | ||
| Theorem | 0inp0 5299 | Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 21-Jun-1993.) |
| ⊢ (𝐴 = ∅ → ¬ 𝐴 = {∅}) | ||
| Theorem | unidif0 5300 | The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.) |
| ⊢ ∪ (𝐴 ∖ {∅}) = ∪ 𝐴 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |