| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sepexlem | Structured version Visualization version GIF version | ||
| Description: Lemma for sepex 5298. Use sepex 5298 instead. (Contributed by Matthew House, 19-Sep-2025.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sepexlem | ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-sep 5294 | . . 3 ⊢ ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) | |
| 2 | bimsc1 845 | . . . . . 6 ⊢ (((𝜑 → 𝑥 ∈ 𝑦) ∧ (𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑))) → (𝑥 ∈ 𝑧 ↔ 𝜑)) | |
| 3 | 2 | ex 412 | . . . . 5 ⊢ ((𝜑 → 𝑥 ∈ 𝑦) → ((𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) → (𝑥 ∈ 𝑧 ↔ 𝜑))) |
| 4 | 3 | al2imi 1815 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → (∀𝑥(𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑))) |
| 5 | 4 | eximdv 1917 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → (∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ (𝑥 ∈ 𝑦 ∧ 𝜑)) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑))) |
| 6 | 1, 5 | mpi 20 | . 2 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) |
| 7 | 6 | exlimiv 1930 | 1 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 ∈ 𝑦) → ∃𝑧∀𝑥(𝑥 ∈ 𝑧 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-sep 5294 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: sepex 5298 |
| Copyright terms: Public domain | W3C validator |