Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-sep | Structured version Visualization version GIF version |
Description: Axiom scheme of
separation. This is an axiom scheme of Zermelo and
Zermelo-Fraenkel set theories.
It was derived as axsep 5191 above and is therefore redundant in ZF set theory, which contains ax-rep 5179 as an axiom (contrary to Zermelo set theory). We state it as a separate axiom here so that some of its uses can be identified more easily. Some textbooks present the axiom scheme of separation as a separate axiom scheme in order to show that much of set theory can be derived without the stronger axiom scheme of replacement (which is not part of Zermelo set theory). The axiom scheme of separation is a weak form of Frege's axiom scheme of (unrestricted) comprehension, in that it conditions it with the condition 𝑥 ∈ 𝑧, so that it asserts the existence of a collection only if it is smaller than some other collection 𝑧 that already exists. This prevents Russell's paradox ru 3693. In some texts, this scheme is called "Aussonderung" (German for "separation") or "Subset Axiom". The variable 𝑥 can occur in the formula 𝜑, which in textbooks is often written 𝜑(𝑥). To specify this in the Metamath language, we omit the distinct variable condition ($d) that 𝑥 not occur in 𝜑. For a version using a class variable, see zfauscl 5194, which requires the axiom of extensionality as well as the axiom scheme of separation for its derivation. If we omit the requirement that 𝑦 not occur in 𝜑, we can derive a contradiction, as notzfaus 5254 shows (showing the necessity of that condition in zfauscl 5194). Scheme Sep of [BellMachover] p. 463. (Contributed by NM, 11-Sep-2006.) |
Ref | Expression |
---|---|
ax-sep | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . . . 5 setvar 𝑥 | |
2 | vy | . . . . 5 setvar 𝑦 | |
3 | 1, 2 | wel 2111 | . . . 4 wff 𝑥 ∈ 𝑦 |
4 | vz | . . . . . 6 setvar 𝑧 | |
5 | 1, 4 | wel 2111 | . . . . 5 wff 𝑥 ∈ 𝑧 |
6 | wph | . . . . 5 wff 𝜑 | |
7 | 5, 6 | wa 399 | . . . 4 wff (𝑥 ∈ 𝑧 ∧ 𝜑) |
8 | 3, 7 | wb 209 | . . 3 wff (𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
9 | 8, 1 | wal 1541 | . 2 wff ∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
10 | 9, 2 | wex 1787 | 1 wff ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
Colors of variables: wff setvar class |
This axiom is referenced by: axsepg 5193 zfauscl 5194 bm1.3ii 5195 ax6vsep 5196 axnul 5198 nalset 5206 bj-zfauscl 34849 bj-bm1.3ii 34972 |
Copyright terms: Public domain | W3C validator |