Proof of Theorem bnj1014
Step | Hyp | Ref
| Expression |
1 | | bnj1014.14 |
. . . . . . 7
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
2 | | nfcv 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝐷 |
3 | | bnj1014.1 |
. . . . . . . . . . 11
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
4 | | bnj1014.2 |
. . . . . . . . . . 11
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
5 | 3, 4 | bnj911 32432 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∀𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
6 | 5 | nf5i 2147 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) |
7 | 2, 6 | nfrex 3233 |
. . . . . . . 8
⊢
Ⅎ𝑖∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) |
8 | 7 | nfab 2925 |
. . . . . . 7
⊢
Ⅎ𝑖{𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
9 | 1, 8 | nfcxfr 2917 |
. . . . . 6
⊢
Ⅎ𝑖𝐵 |
10 | 9 | nfcri 2906 |
. . . . 5
⊢
Ⅎ𝑖 𝑔 ∈ 𝐵 |
11 | | nfv 1915 |
. . . . 5
⊢
Ⅎ𝑖 𝑗 ∈ dom 𝑔 |
12 | 10, 11 | nfan 1900 |
. . . 4
⊢
Ⅎ𝑖(𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) |
13 | | nfv 1915 |
. . . 4
⊢
Ⅎ𝑖(𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) |
14 | 12, 13 | nfim 1897 |
. . 3
⊢
Ⅎ𝑖((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
15 | 14 | nf5ri 2193 |
. 2
⊢ (((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) → ∀𝑖((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
16 | | eleq1w 2834 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑗 ∈ dom 𝑔 ↔ 𝑖 ∈ dom 𝑔)) |
17 | 16 | anbi2d 631 |
. . . . 5
⊢ (𝑗 = 𝑖 → ((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) ↔ (𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔))) |
18 | | fveq2 6658 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑔‘𝑗) = (𝑔‘𝑖)) |
19 | 18 | sseq1d 3923 |
. . . . 5
⊢ (𝑗 = 𝑖 → ((𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
20 | 17, 19 | imbi12d 348 |
. . . 4
⊢ (𝑗 = 𝑖 → (((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
21 | 20 | equcoms 2027 |
. . 3
⊢ (𝑖 = 𝑗 → (((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
22 | 1 | bnj1317 32321 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐵 → ∀𝑓 𝑔 ∈ 𝐵) |
23 | 22 | nf5i 2147 |
. . . . . 6
⊢
Ⅎ𝑓 𝑔 ∈ 𝐵 |
24 | | nfv 1915 |
. . . . . 6
⊢
Ⅎ𝑓 𝑖 ∈ dom 𝑔 |
25 | 23, 24 | nfan 1900 |
. . . . 5
⊢
Ⅎ𝑓(𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) |
26 | | nfv 1915 |
. . . . 5
⊢
Ⅎ𝑓(𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅) |
27 | 25, 26 | nfim 1897 |
. . . 4
⊢
Ⅎ𝑓((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
28 | | eleq1w 2834 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐵 ↔ 𝑔 ∈ 𝐵)) |
29 | | dmeq 5743 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔) |
30 | 29 | eleq2d 2837 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ dom 𝑔)) |
31 | 28, 30 | anbi12d 633 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔))) |
32 | | fveq1 6657 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓‘𝑖) = (𝑔‘𝑖)) |
33 | 32 | sseq1d 3923 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
34 | 31, 33 | imbi12d 348 |
. . . 4
⊢ (𝑓 = 𝑔 → (((𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
35 | | ssiun2 4936 |
. . . . 5
⊢ (𝑖 ∈ dom 𝑓 → (𝑓‘𝑖) ⊆ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
36 | | ssiun2 4936 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵 → ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
37 | | bnj1014.13 |
. . . . . . 7
⊢ 𝐷 = (ω ∖
{∅}) |
38 | 3, 4, 37, 1 | bnj882 32426 |
. . . . . 6
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
39 | 36, 38 | sseqtrrdi 3943 |
. . . . 5
⊢ (𝑓 ∈ 𝐵 → ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
40 | 35, 39 | sylan9ssr 3906 |
. . . 4
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
41 | 27, 34, 40 | chvarfv 2240 |
. . 3
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
42 | 21, 41 | speivw 1977 |
. 2
⊢
∃𝑖((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
43 | 15, 42 | bnj1131 32287 |
1
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |