Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1014 Structured version   Visualization version   GIF version

Theorem bnj1014 34625
Description: Technical lemma for bnj69 34674. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1014.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1014.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1014.13 𝐷 = (ω ∖ {∅})
bnj1014.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj1014 ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝑓,𝑔,𝑖   𝑖,𝑗   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑔,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑔,𝑖,𝑗,𝑛)   𝐴(𝑔,𝑗)   𝐵(𝑦,𝑓,𝑔,𝑖,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑔,𝑗,𝑛)   𝑅(𝑔,𝑗)   𝑋(𝑔,𝑗)

Proof of Theorem bnj1014
StepHypRef Expression
1 bnj1014.14 . . . . . . 7 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
2 nfcv 2899 . . . . . . . . 9 𝑖𝐷
3 bnj1014.1 . . . . . . . . . . 11 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
4 bnj1014.2 . . . . . . . . . . 11 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
53, 4bnj911 34596 . . . . . . . . . 10 ((𝑓 Fn 𝑛𝜑𝜓) → ∀𝑖(𝑓 Fn 𝑛𝜑𝜓))
65nf5i 2134 . . . . . . . . 9 𝑖(𝑓 Fn 𝑛𝜑𝜓)
72, 6nfrexw 3308 . . . . . . . 8 𝑖𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
87nfab 2905 . . . . . . 7 𝑖{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
91, 8nfcxfr 2897 . . . . . 6 𝑖𝐵
109nfcri 2886 . . . . 5 𝑖 𝑔𝐵
11 nfv 1909 . . . . 5 𝑖 𝑗 ∈ dom 𝑔
1210, 11nfan 1894 . . . 4 𝑖(𝑔𝐵𝑗 ∈ dom 𝑔)
13 nfv 1909 . . . 4 𝑖(𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)
1412, 13nfim 1891 . . 3 𝑖((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
1514nf5ri 2183 . 2 (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) → ∀𝑖((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)))
16 eleq1w 2812 . . . . . 6 (𝑗 = 𝑖 → (𝑗 ∈ dom 𝑔𝑖 ∈ dom 𝑔))
1716anbi2d 628 . . . . 5 (𝑗 = 𝑖 → ((𝑔𝐵𝑗 ∈ dom 𝑔) ↔ (𝑔𝐵𝑖 ∈ dom 𝑔)))
18 fveq2 6902 . . . . . 6 (𝑗 = 𝑖 → (𝑔𝑗) = (𝑔𝑖))
1918sseq1d 4013 . . . . 5 (𝑗 = 𝑖 → ((𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2017, 19imbi12d 343 . . . 4 (𝑗 = 𝑖 → (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))))
2120equcoms 2015 . . 3 (𝑖 = 𝑗 → (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))))
221bnj1317 34485 . . . . . . 7 (𝑔𝐵 → ∀𝑓 𝑔𝐵)
2322nf5i 2134 . . . . . 6 𝑓 𝑔𝐵
24 nfv 1909 . . . . . 6 𝑓 𝑖 ∈ dom 𝑔
2523, 24nfan 1894 . . . . 5 𝑓(𝑔𝐵𝑖 ∈ dom 𝑔)
26 nfv 1909 . . . . 5 𝑓(𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)
2725, 26nfim 1891 . . . 4 𝑓((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
28 eleq1w 2812 . . . . . 6 (𝑓 = 𝑔 → (𝑓𝐵𝑔𝐵))
29 dmeq 5910 . . . . . . 7 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
3029eleq2d 2815 . . . . . 6 (𝑓 = 𝑔 → (𝑖 ∈ dom 𝑓𝑖 ∈ dom 𝑔))
3128, 30anbi12d 630 . . . . 5 (𝑓 = 𝑔 → ((𝑓𝐵𝑖 ∈ dom 𝑓) ↔ (𝑔𝐵𝑖 ∈ dom 𝑔)))
32 fveq1 6901 . . . . . 6 (𝑓 = 𝑔 → (𝑓𝑖) = (𝑔𝑖))
3332sseq1d 4013 . . . . 5 (𝑓 = 𝑔 → ((𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))
3431, 33imbi12d 343 . . . 4 (𝑓 = 𝑔 → (((𝑓𝐵𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))))
35 ssiun2 5054 . . . . 5 (𝑖 ∈ dom 𝑓 → (𝑓𝑖) ⊆ 𝑖 ∈ dom 𝑓(𝑓𝑖))
36 ssiun2 5054 . . . . . 6 (𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖))
37 bnj1014.13 . . . . . . 7 𝐷 = (ω ∖ {∅})
383, 4, 37, 1bnj882 34590 . . . . . 6 trCl(𝑋, 𝐴, 𝑅) = 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖)
3936, 38sseqtrrdi 4033 . . . . 5 (𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
4035, 39sylan9ssr 3996 . . . 4 ((𝑓𝐵𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
4127, 34, 40chvarfv 2228 . . 3 ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
4221, 41speivw 1969 . 2 𝑖((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
4315, 42bnj1131 34451 1 ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2705  wral 3058  wrex 3067  cdif 3946  wss 3949  c0 4326  {csn 4632   ciun 5000  dom cdm 5682  suc csuc 6376   Fn wfn 6548  cfv 6553  ωcom 7876   predc-bnj14 34352   trClc-bnj18 34358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-dm 5692  df-iota 6505  df-fv 6561  df-bnj18 34359
This theorem is referenced by:  bnj1015  34626
  Copyright terms: Public domain W3C validator