Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1014 Structured version   Visualization version   GIF version

Theorem bnj1014 32233
Description: Technical lemma for bnj69 32282. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1014.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj1014.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj1014.13 𝐷 = (ω ∖ {∅})
bnj1014.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj1014 ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑖   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛,𝑦   𝑓,𝑔,𝑖   𝑖,𝑗   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑔,𝑗,𝑛)   𝜓(𝑦,𝑓,𝑔,𝑖,𝑗,𝑛)   𝐴(𝑔,𝑗)   𝐵(𝑦,𝑓,𝑔,𝑖,𝑗,𝑛)   𝐷(𝑦,𝑓,𝑔,𝑗,𝑛)   𝑅(𝑔,𝑗)   𝑋(𝑔,𝑗)

Proof of Theorem bnj1014
StepHypRef Expression
1 bnj1014.14 . . . . . . 7 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
2 nfcv 2977 . . . . . . . . 9 𝑖𝐷
3 bnj1014.1 . . . . . . . . . . 11 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
4 bnj1014.2 . . . . . . . . . . 11 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
53, 4bnj911 32204 . . . . . . . . . 10 ((𝑓 Fn 𝑛𝜑𝜓) → ∀𝑖(𝑓 Fn 𝑛𝜑𝜓))
65nf5i 2150 . . . . . . . . 9 𝑖(𝑓 Fn 𝑛𝜑𝜓)
72, 6nfrex 3309 . . . . . . . 8 𝑖𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
87nfab 2984 . . . . . . 7 𝑖{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
91, 8nfcxfr 2975 . . . . . 6 𝑖𝐵
109nfcri 2971 . . . . 5 𝑖 𝑔𝐵
11 nfv 1915 . . . . 5 𝑖 𝑗 ∈ dom 𝑔
1210, 11nfan 1900 . . . 4 𝑖(𝑔𝐵𝑗 ∈ dom 𝑔)
13 nfv 1915 . . . 4 𝑖(𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)
1412, 13nfim 1897 . . 3 𝑖((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
1514nf5ri 2195 . 2 (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) → ∀𝑖((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)))
16 eleq1w 2895 . . . . . 6 (𝑗 = 𝑖 → (𝑗 ∈ dom 𝑔𝑖 ∈ dom 𝑔))
1716anbi2d 630 . . . . 5 (𝑗 = 𝑖 → ((𝑔𝐵𝑗 ∈ dom 𝑔) ↔ (𝑔𝐵𝑖 ∈ dom 𝑔)))
18 fveq2 6670 . . . . . 6 (𝑗 = 𝑖 → (𝑔𝑗) = (𝑔𝑖))
1918sseq1d 3998 . . . . 5 (𝑗 = 𝑖 → ((𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2017, 19imbi12d 347 . . . 4 (𝑗 = 𝑖 → (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))))
2120equcoms 2027 . . 3 (𝑖 = 𝑗 → (((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))))
221bnj1317 32093 . . . . . . 7 (𝑔𝐵 → ∀𝑓 𝑔𝐵)
2322nf5i 2150 . . . . . 6 𝑓 𝑔𝐵
24 nfv 1915 . . . . . 6 𝑓 𝑖 ∈ dom 𝑔
2523, 24nfan 1900 . . . . 5 𝑓(𝑔𝐵𝑖 ∈ dom 𝑔)
26 nfv 1915 . . . . 5 𝑓(𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)
2725, 26nfim 1897 . . . 4 𝑓((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
28 eleq1w 2895 . . . . . 6 (𝑓 = 𝑔 → (𝑓𝐵𝑔𝐵))
29 dmeq 5772 . . . . . . 7 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
3029eleq2d 2898 . . . . . 6 (𝑓 = 𝑔 → (𝑖 ∈ dom 𝑓𝑖 ∈ dom 𝑔))
3128, 30anbi12d 632 . . . . 5 (𝑓 = 𝑔 → ((𝑓𝐵𝑖 ∈ dom 𝑓) ↔ (𝑔𝐵𝑖 ∈ dom 𝑔)))
32 fveq1 6669 . . . . . 6 (𝑓 = 𝑔 → (𝑓𝑖) = (𝑔𝑖))
3332sseq1d 3998 . . . . 5 (𝑓 = 𝑔 → ((𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))
3431, 33imbi12d 347 . . . 4 (𝑓 = 𝑔 → (((𝑓𝐵𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))))
35 ssiun2 4971 . . . . 5 (𝑖 ∈ dom 𝑓 → (𝑓𝑖) ⊆ 𝑖 ∈ dom 𝑓(𝑓𝑖))
36 ssiun2 4971 . . . . . 6 (𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖))
37 bnj1014.13 . . . . . . 7 𝐷 = (ω ∖ {∅})
383, 4, 37, 1bnj882 32198 . . . . . 6 trCl(𝑋, 𝐴, 𝑅) = 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖)
3936, 38sseqtrrdi 4018 . . . . 5 (𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
4035, 39sylan9ssr 3981 . . . 4 ((𝑓𝐵𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
4127, 34, 40chvarfv 2242 . . 3 ((𝑔𝐵𝑖 ∈ dom 𝑔) → (𝑔𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
4221, 41speivw 1977 . 2 𝑖((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
4315, 42bnj1131 32059 1 ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  cdif 3933  wss 3936  c0 4291  {csn 4567   ciun 4919  dom cdm 5555  suc csuc 6193   Fn wfn 6350  cfv 6355  ωcom 7580   predc-bnj14 31958   trClc-bnj18 31964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-dm 5565  df-iota 6314  df-fv 6363  df-bnj18 31965
This theorem is referenced by:  bnj1015  32234
  Copyright terms: Public domain W3C validator