Proof of Theorem bnj1014
| Step | Hyp | Ref
| Expression |
| 1 | | bnj1014.14 |
. . . . . . 7
⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| 2 | | nfcv 2898 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝐷 |
| 3 | | bnj1014.1 |
. . . . . . . . . . 11
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| 4 | | bnj1014.2 |
. . . . . . . . . . 11
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| 5 | 3, 4 | bnj911 34963 |
. . . . . . . . . 10
⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) → ∀𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| 6 | 5 | nf5i 2146 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) |
| 7 | 2, 6 | nfrexw 3293 |
. . . . . . . 8
⊢
Ⅎ𝑖∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) |
| 8 | 7 | nfab 2904 |
. . . . . . 7
⊢
Ⅎ𝑖{𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
| 9 | 1, 8 | nfcxfr 2896 |
. . . . . 6
⊢
Ⅎ𝑖𝐵 |
| 10 | 9 | nfcri 2890 |
. . . . 5
⊢
Ⅎ𝑖 𝑔 ∈ 𝐵 |
| 11 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑖 𝑗 ∈ dom 𝑔 |
| 12 | 10, 11 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑖(𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) |
| 13 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑖(𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) |
| 14 | 12, 13 | nfim 1896 |
. . 3
⊢
Ⅎ𝑖((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 15 | 14 | nf5ri 2195 |
. 2
⊢ (((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) → ∀𝑖((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
| 16 | | eleq1w 2817 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑗 ∈ dom 𝑔 ↔ 𝑖 ∈ dom 𝑔)) |
| 17 | 16 | anbi2d 630 |
. . . . 5
⊢ (𝑗 = 𝑖 → ((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) ↔ (𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔))) |
| 18 | | fveq2 6876 |
. . . . . 6
⊢ (𝑗 = 𝑖 → (𝑔‘𝑗) = (𝑔‘𝑖)) |
| 19 | 18 | sseq1d 3990 |
. . . . 5
⊢ (𝑗 = 𝑖 → ((𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
| 20 | 17, 19 | imbi12d 344 |
. . . 4
⊢ (𝑗 = 𝑖 → (((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
| 21 | 20 | equcoms 2019 |
. . 3
⊢ (𝑖 = 𝑗 → (((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
| 22 | 1 | bnj1317 34852 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐵 → ∀𝑓 𝑔 ∈ 𝐵) |
| 23 | 22 | nf5i 2146 |
. . . . . 6
⊢
Ⅎ𝑓 𝑔 ∈ 𝐵 |
| 24 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑓 𝑖 ∈ dom 𝑔 |
| 25 | 23, 24 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑓(𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) |
| 26 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑓(𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅) |
| 27 | 25, 26 | nfim 1896 |
. . . 4
⊢
Ⅎ𝑓((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 28 | | eleq1w 2817 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐵 ↔ 𝑔 ∈ 𝐵)) |
| 29 | | dmeq 5883 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔) |
| 30 | 29 | eleq2d 2820 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ dom 𝑔)) |
| 31 | 28, 30 | anbi12d 632 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓) ↔ (𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔))) |
| 32 | | fveq1 6875 |
. . . . . 6
⊢ (𝑓 = 𝑔 → (𝑓‘𝑖) = (𝑔‘𝑖)) |
| 33 | 32 | sseq1d 3990 |
. . . . 5
⊢ (𝑓 = 𝑔 → ((𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅) ↔ (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))) |
| 34 | 31, 33 | imbi12d 344 |
. . . 4
⊢ (𝑓 = 𝑔 → (((𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) ↔ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)))) |
| 35 | | ssiun2 5023 |
. . . . 5
⊢ (𝑖 ∈ dom 𝑓 → (𝑓‘𝑖) ⊆ ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
| 36 | | ssiun2 5023 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵 → ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖)) |
| 37 | | bnj1014.13 |
. . . . . . 7
⊢ 𝐷 = (ω ∖
{∅}) |
| 38 | 3, 4, 37, 1 | bnj882 34957 |
. . . . . 6
⊢
trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
| 39 | 36, 38 | sseqtrrdi 4000 |
. . . . 5
⊢ (𝑓 ∈ 𝐵 → ∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 40 | 35, 39 | sylan9ssr 3973 |
. . . 4
⊢ ((𝑓 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑓) → (𝑓‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 41 | 27, 34, 40 | chvarfv 2240 |
. . 3
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑖 ∈ dom 𝑔) → (𝑔‘𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 42 | 21, 41 | speivw 1973 |
. 2
⊢
∃𝑖((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |
| 43 | 15, 42 | bnj1131 34818 |
1
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑗 ∈ dom 𝑔) → (𝑔‘𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅)) |