Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eusnsn | Structured version Visualization version GIF version |
Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
eusnsn | ⊢ ∃!𝑥{𝑥} = {𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2032 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
2 | 1 | bibi2d 342 | . . . 4 ⊢ (𝑧 = 𝑦 → (({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
3 | 2 | albidv 1926 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
4 | sneqbg 4779 | . . . . 5 ⊢ (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) | |
5 | 4 | elv 3436 | . . . 4 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
6 | 5 | ax-gen 1801 | . . 3 ⊢ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
7 | 3, 6 | speivw 1980 | . 2 ⊢ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) |
8 | eu6 2575 | . 2 ⊢ (∃!𝑥{𝑥} = {𝑦} ↔ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ ∃!𝑥{𝑥} = {𝑦} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1539 = wceq 1541 ∃wex 1785 ∃!weu 2569 Vcvv 3430 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-sn 4567 |
This theorem is referenced by: aiotaval 44538 |
Copyright terms: Public domain | W3C validator |