Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eusnsn | Structured version Visualization version GIF version |
Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
eusnsn | ⊢ ∃!𝑥{𝑥} = {𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2030 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
2 | 1 | bibi2d 342 | . . . 4 ⊢ (𝑧 = 𝑦 → (({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
3 | 2 | albidv 1924 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
4 | sneqbg 4771 | . . . . 5 ⊢ (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) | |
5 | 4 | elv 3428 | . . . 4 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
6 | 5 | ax-gen 1799 | . . 3 ⊢ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
7 | 3, 6 | speivw 1978 | . 2 ⊢ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) |
8 | eu6 2574 | . 2 ⊢ (∃!𝑥{𝑥} = {𝑦} ↔ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ ∃!𝑥{𝑥} = {𝑦} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∃!weu 2568 Vcvv 3422 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-sn 4559 |
This theorem is referenced by: aiotaval 44474 |
Copyright terms: Public domain | W3C validator |