| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eusnsn | Structured version Visualization version GIF version | ||
| Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
| Ref | Expression |
|---|---|
| eusnsn | ⊢ ∃!𝑥{𝑥} = {𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ2 2024 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
| 2 | 1 | bibi2d 342 | . . . 4 ⊢ (𝑧 = 𝑦 → (({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
| 3 | 2 | albidv 1919 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
| 4 | sneqbg 4842 | . . . . 5 ⊢ (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) | |
| 5 | 4 | elv 3484 | . . . 4 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 6 | 5 | ax-gen 1794 | . . 3 ⊢ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
| 7 | 3, 6 | speivw 1972 | . 2 ⊢ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) |
| 8 | eu6 2573 | . 2 ⊢ (∃!𝑥{𝑥} = {𝑦} ↔ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧)) | |
| 9 | 7, 8 | mpbir 231 | 1 ⊢ ∃!𝑥{𝑥} = {𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1537 = wceq 1539 ∃wex 1778 ∃!weu 2567 Vcvv 3479 {csn 4625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-sn 4626 |
| This theorem is referenced by: aiotaval 47112 |
| Copyright terms: Public domain | W3C validator |