Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eusnsn Structured version   Visualization version   GIF version

Theorem eusnsn 43281
Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
eusnsn ∃!𝑥{𝑥} = {𝑦}
Distinct variable group:   𝑥,𝑦

Proof of Theorem eusnsn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equequ2 2033 . . . . 5 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
21bibi2d 345 . . . 4 (𝑧 = 𝑦 → (({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)))
32albidv 1921 . . 3 (𝑧 = 𝑦 → (∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)))
4 sneqbg 4774 . . . . 5 (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
54elv 3499 . . . 4 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
65ax-gen 1796 . . 3 𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
73, 6speivw 1977 . 2 𝑧𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧)
8 eu6 2659 . 2 (∃!𝑥{𝑥} = {𝑦} ↔ ∃𝑧𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧))
97, 8mpbir 233 1 ∃!𝑥{𝑥} = {𝑦}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wal 1535   = wceq 1537  wex 1780  ∃!weu 2653  Vcvv 3494  {csn 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-sn 4568
This theorem is referenced by:  aiotaval  43313
  Copyright terms: Public domain W3C validator