![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eusnsn | Structured version Visualization version GIF version |
Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
eusnsn | ⊢ ∃!𝑥{𝑥} = {𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2023 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
2 | 1 | bibi2d 342 | . . . 4 ⊢ (𝑧 = 𝑦 → (({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
3 | 2 | albidv 1918 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
4 | sneqbg 4848 | . . . . 5 ⊢ (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) | |
5 | 4 | elv 3483 | . . . 4 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
6 | 5 | ax-gen 1792 | . . 3 ⊢ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
7 | 3, 6 | speivw 1971 | . 2 ⊢ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) |
8 | eu6 2572 | . 2 ⊢ (∃!𝑥{𝑥} = {𝑦} ↔ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧)) | |
9 | 7, 8 | mpbir 231 | 1 ⊢ ∃!𝑥{𝑥} = {𝑦} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 = wceq 1537 ∃wex 1776 ∃!weu 2566 Vcvv 3478 {csn 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-sn 4632 |
This theorem is referenced by: aiotaval 47045 |
Copyright terms: Public domain | W3C validator |