Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eusnsn Structured version   Visualization version   GIF version

Theorem eusnsn 46976
Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.)
Assertion
Ref Expression
eusnsn ∃!𝑥{𝑥} = {𝑦}
Distinct variable group:   𝑥,𝑦

Proof of Theorem eusnsn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 equequ2 2023 . . . . 5 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
21bibi2d 342 . . . 4 (𝑧 = 𝑦 → (({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)))
32albidv 1918 . . 3 (𝑧 = 𝑦 → (∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)))
4 sneqbg 4848 . . . . 5 (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
54elv 3483 . . . 4 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
65ax-gen 1792 . . 3 𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
73, 6speivw 1971 . 2 𝑧𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧)
8 eu6 2572 . 2 (∃!𝑥{𝑥} = {𝑦} ↔ ∃𝑧𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧))
97, 8mpbir 231 1 ∃!𝑥{𝑥} = {𝑦}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535   = wceq 1537  wex 1776  ∃!weu 2566  Vcvv 3478  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-sn 4632
This theorem is referenced by:  aiotaval  47045
  Copyright terms: Public domain W3C validator