![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eusnsn | Structured version Visualization version GIF version |
Description: There is a unique element of a singleton which is equal to another singleton. (Contributed by AV, 24-Aug-2022.) |
Ref | Expression |
---|---|
eusnsn | ⊢ ∃!𝑥{𝑥} = {𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 2022 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
2 | 1 | bibi2d 342 | . . . 4 ⊢ (𝑧 = 𝑦 → (({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
3 | 2 | albidv 1916 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) ↔ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))) |
4 | sneqbg 4845 | . . . . 5 ⊢ (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) | |
5 | 4 | elv 3477 | . . . 4 ⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
6 | 5 | ax-gen 1790 | . . 3 ⊢ ∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
7 | 3, 6 | speivw 1970 | . 2 ⊢ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧) |
8 | eu6 2564 | . 2 ⊢ (∃!𝑥{𝑥} = {𝑦} ↔ ∃𝑧∀𝑥({𝑥} = {𝑦} ↔ 𝑥 = 𝑧)) | |
9 | 7, 8 | mpbir 230 | 1 ⊢ ∃!𝑥{𝑥} = {𝑦} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 = wceq 1534 ∃wex 1774 ∃!weu 2558 Vcvv 3471 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-sn 4630 |
This theorem is referenced by: aiotaval 46475 |
Copyright terms: Public domain | W3C validator |