![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ax12v2-o | Structured version Visualization version GIF version |
Description: Rederivation of ax-c15 38062 from ax12v 2170 (without using ax-c15 38062 or the full ax-12 2169). Thus, the hypothesis (ax12v 2170) provides an alternate axiom that can be used in place of ax-c15 38062. See also axc15 2419. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax12v2-o.1 | ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Ref | Expression |
---|---|
ax12v2-o | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax6ev 1971 | . 2 ⊢ ∃𝑧 𝑧 = 𝑦 | |
2 | ax12v2-o.1 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
3 | equequ2 2027 | . . . . . . 7 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
4 | 3 | adantl 480 | . . . . . 6 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) |
5 | dveeq2-o 38106 | . . . . . . . . 9 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | |
6 | 5 | imp 405 | . . . . . . . 8 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦) |
7 | nfa1-o 38088 | . . . . . . . . 9 ⊢ Ⅎ𝑥∀𝑥 𝑧 = 𝑦 | |
8 | 3 | imbi1d 340 | . . . . . . . . . 10 ⊢ (𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) |
9 | 8 | sps-o 38081 | . . . . . . . . 9 ⊢ (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑))) |
10 | 7, 9 | albid 2213 | . . . . . . . 8 ⊢ (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
11 | 6, 10 | syl 17 | . . . . . . 7 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
12 | 11 | imbi2d 339 | . . . . . 6 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
13 | 4, 12 | imbi12d 343 | . . . . 5 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
14 | 2, 13 | mpbii 232 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
15 | 14 | ex 411 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
16 | 15 | exlimdv 1934 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))))) |
17 | 1, 16 | mpi 20 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-11 2152 ax-12 2169 ax-13 2369 ax-c5 38056 ax-c4 38057 ax-c7 38058 ax-c10 38059 ax-c11 38060 ax-c9 38063 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 |
This theorem is referenced by: ax12a2-o 38123 |
Copyright terms: Public domain | W3C validator |