Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12v2-o Structured version   Visualization version   GIF version

Theorem ax12v2-o 34962
Description: Rederivation of ax-c15 34902 from ax12v 2214 (without using ax-c15 34902 or the full ax-12 2213). Thus, the hypothesis (ax12v 2214) provides an alternate axiom that can be used in place of ax-c15 34902. See also axc15 2406. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax12v2-o.1 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
Assertion
Ref Expression
ax12v2-o (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax12v2-o
StepHypRef Expression
1 ax6ev 2074 . 2 𝑧 𝑧 = 𝑦
2 ax12v2-o.1 . . . . 5 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
3 equequ2 2125 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
43adantl 474 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑧𝑥 = 𝑦))
5 dveeq2-o 34946 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
65imp 396 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦)
7 nfa1-o 34928 . . . . . . . . 9 𝑥𝑥 𝑧 = 𝑦
83imbi1d 333 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
98sps-o 34921 . . . . . . . . 9 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
107, 9albid 2257 . . . . . . . 8 (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
116, 10syl 17 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
1211imbi2d 332 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
134, 12imbi12d 336 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
142, 13mpbii 225 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
1514ex 402 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
1615exlimdv 2029 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
171, 16mpi 20 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wal 1651  wex 1875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-c5 34896  ax-c4 34897  ax-c7 34898  ax-c10 34899  ax-c11 34900  ax-c9 34903
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880
This theorem is referenced by:  ax12a2-o  34963
  Copyright terms: Public domain W3C validator