Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12v2-o Structured version   Visualization version   GIF version

Theorem ax12v2-o 36890
Description: Rederivation of ax-c15 36830 from ax12v 2174 (without using ax-c15 36830 or the full ax-12 2173). Thus, the hypothesis (ax12v 2174) provides an alternate axiom that can be used in place of ax-c15 36830. See also axc15 2422. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax12v2-o.1 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
Assertion
Ref Expression
ax12v2-o (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax12v2-o
StepHypRef Expression
1 ax6ev 1974 . 2 𝑧 𝑧 = 𝑦
2 ax12v2-o.1 . . . . 5 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
3 equequ2 2030 . . . . . . 7 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
43adantl 481 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑧𝑥 = 𝑦))
5 dveeq2-o 36874 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
65imp 406 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → ∀𝑥 𝑧 = 𝑦)
7 nfa1-o 36856 . . . . . . . . 9 𝑥𝑥 𝑧 = 𝑦
83imbi1d 341 . . . . . . . . . 10 (𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
98sps-o 36849 . . . . . . . . 9 (∀𝑥 𝑧 = 𝑦 → ((𝑥 = 𝑧𝜑) ↔ (𝑥 = 𝑦𝜑)))
107, 9albid 2218 . . . . . . . 8 (∀𝑥 𝑧 = 𝑦 → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
116, 10syl 17 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
1211imbi2d 340 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → ((𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
134, 12imbi12d 344 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → ((𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑))) ↔ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
142, 13mpbii 232 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦𝑧 = 𝑦) → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
1514ex 412 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
1615exlimdv 1937 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))))
171, 16mpi 20 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-c5 36824  ax-c4 36825  ax-c7 36826  ax-c10 36827  ax-c11 36828  ax-c9 36831
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788
This theorem is referenced by:  ax12a2-o  36891
  Copyright terms: Public domain W3C validator